Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
iris-coq
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Michael Sammler
iris-coq
Commits
5739b936
Commit
5739b936
authored
8 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
start proving Derek's contradiction
parent
4d8c4ac8
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
program_logic/counter_examples.v
+162
-0
162 additions, 0 deletions
program_logic/counter_examples.v
with
162 additions
and
0 deletions
program_logic/counter_examples.v
+
162
−
0
View file @
5739b936
...
@@ -58,3 +58,165 @@ Section savedprop.
...
@@ -58,3 +58,165 @@ Section savedprop.
rewrite
-
uPred
.
later_intro
.
apply
rvs_false
.
rewrite
-
uPred
.
later_intro
.
apply
rvs_false
.
Qed
.
Qed
.
End
savedprop
.
End
savedprop
.
(** This proves that we need the ▷ when opening invariants. *)
(** We fork in [uPred M] for any M, but the proof would work in any BI. *)
Section
inv
.
Context
(
M
:
ucmraT
)
.
Notation
iProp
:=
(
uPred
M
)
.
Notation
"¬ P"
:=
(
□
(
P
→
False
))
%
I
:
uPred_scope
.
Implicit
Types
P
:
iProp
.
(** Assumptions *)
(* We have view shifts (two classes: empty/full mask) *)
Context
(
pvs0
pvs1
:
iProp
→
iProp
)
.
Hypothesis
pvs0_intro
:
forall
P
,
P
⊢
pvs0
P
.
Hypothesis
pvs0_mono
:
forall
P
Q
,
(
P
⊢
Q
)
→
pvs0
P
⊢
pvs0
Q
.
Hypothesis
pvs0_pvs0
:
forall
P
,
pvs0
(
pvs0
P
)
⊢
pvs0
P
.
Hypothesis
pvs0_frame_l
:
forall
P
Q
,
P
★
pvs0
Q
⊢
pvs0
(
P
★
Q
)
.
Hypothesis
pvs1_mono
:
forall
P
Q
,
(
P
⊢
Q
)
→
pvs1
P
⊢
pvs1
Q
.
Hypothesis
pvs1_pvs1
:
forall
P
,
pvs1
(
pvs1
P
)
⊢
pvs1
P
.
Hypothesis
pvs1_frame_l
:
forall
P
Q
,
P
★
pvs1
Q
⊢
pvs1
(
P
★
Q
)
.
Hypothesis
pvs0_pvs1
:
forall
P
,
pvs0
P
⊢
pvs1
P
.
(* We have invariants *)
Context
(
name
:
Type
)
(
inv
:
name
→
iProp
→
iProp
)
.
Hypothesis
inv_persistent
:
forall
i
P
,
PersistentP
(
inv
i
P
)
.
Hypothesis
inv_alloc_dep
:
forall
(
P
:
name
→
iProp
),
(
∀
i
,
P
i
)
⊢
pvs1
(
∃
i
,
inv
i
(
P
i
))
.
Hypothesis
inv_open
:
forall
i
P
Q
R
,
(
P
★
Q
⊢
pvs0
(
P
★
R
))
→
(
inv
i
P
★
Q
⊢
pvs1
R
)
.
(* We have tokens for a little "two-state STS" *)
Context
(
start
finished
:
iProp
)
.
Hypothesis
start_finish
:
start
⊢
pvs0
finished
.
Hypothesis
finish_no_start
:
finished
★
start
⊢
False
.
Hypothesis
finish_persistent
:
PersistentP
finished
.
(** Some general lemmas and proof mode compatibility. *)
Lemma
inv_open'
i
P
R
:
inv
i
P
★
(
P
-★
pvs0
(
P
★
pvs1
R
))
⊢
pvs1
R
.
Proof
.
iIntros
"(#HiP & HP)"
.
iApply
pvs1_pvs1
.
iApply
inv_open
;
last
first
.
{
iSplit
;
first
done
.
iExact
"HP"
.
}
iIntros
"(HP & HPw)"
.
by
iApply
"HPw"
.
Qed
.
Lemma
pvs1_intro
P
:
P
⊢
pvs1
P
.
Proof
.
rewrite
-
pvs0_pvs1
.
apply
pvs0_intro
.
Qed
.
Instance
pvs0_mono'
:
Proper
((
⊢
)
==>
(
⊢
))
pvs0
.
Proof
.
intros
?
**.
by
apply
pvs0_mono
.
Qed
.
Instance
pvs0_proper
:
Proper
((
⊣⊢
)
==>
(
⊣⊢
))
pvs0
.
Proof
.
intros
P
Q
Heq
.
apply
(
anti_symm
(
⊢
));
apply
pvs0_mono
;
by
rewrite
?Heq
-
?Heq
.
Qed
.
Instance
pvs1_mono'
:
Proper
((
⊢
)
==>
(
⊢
))
pvs1
.
Proof
.
intros
?
**.
by
apply
pvs1_mono
.
Qed
.
Instance
pvs1_proper
:
Proper
((
⊣⊢
)
==>
(
⊣⊢
))
pvs1
.
Proof
.
intros
P
Q
Heq
.
apply
(
anti_symm
(
⊢
));
apply
pvs1_mono
;
by
rewrite
?Heq
-
?Heq
.
Qed
.
Lemma
pvs0_frame_r
:
forall
P
Q
,
(
pvs0
P
★
Q
)
⊢
pvs0
(
P
★
Q
)
.
Proof
.
intros
.
rewrite
comm
pvs0_frame_l
.
apply
pvs0_mono
.
by
rewrite
comm
.
Qed
.
Lemma
pvs1_frame_r
:
forall
P
Q
,
(
pvs1
P
★
Q
)
⊢
pvs1
(
P
★
Q
)
.
Proof
.
intros
.
rewrite
comm
pvs1_frame_l
.
apply
pvs1_mono
.
by
rewrite
comm
.
Qed
.
Global
Instance
elim_pvs0_pvs0
P
Q
:
ElimVs
(
pvs0
P
)
P
(
pvs0
Q
)
(
pvs0
Q
)
.
Proof
.
rename
Q0
into
Q
.
rewrite
/
ElimVs
.
etrans
;
last
eapply
pvs0_pvs0
.
rewrite
pvs0_frame_r
.
apply
pvs0_mono
.
by
rewrite
uPred
.
wand_elim_r
.
Qed
.
Global
Instance
elim_pvs1_pvs1
P
Q
:
ElimVs
(
pvs1
P
)
P
(
pvs1
Q
)
(
pvs1
Q
)
.
Proof
.
rename
Q0
into
Q
.
rewrite
/
ElimVs
.
etrans
;
last
eapply
pvs1_pvs1
.
rewrite
pvs1_frame_r
.
apply
pvs1_mono
.
by
rewrite
uPred
.
wand_elim_r
.
Qed
.
Global
Instance
elim_pvs0_pvs1
P
Q
:
ElimVs
(
pvs0
P
)
P
(
pvs1
Q
)
(
pvs1
Q
)
.
Proof
.
rename
Q0
into
Q
.
rewrite
/
ElimVs
.
rewrite
pvs0_pvs1
.
apply
elim_pvs1_pvs1
.
Qed
.
(** Now to the actual counterexample. *)
Definition
saved
(
i
:
name
)
(
P
:
iProp
)
:
iProp
:=
inv
i
(
start
∨
□
P
★
finished
)
.
Lemma
saved_alloc
(
P
:
name
→
iProp
)
:
start
⊢
pvs1
(
∃
i
,
saved
i
(
P
i
))
.
Proof
.
iIntros
"HS"
.
iApply
inv_alloc_dep
.
iIntros
(?)
.
by
iLeft
.
Qed
.
Lemma
saved_agree
i
P
Q
:
saved
i
P
★
saved
i
Q
★
□
P
⊢
pvs1
(
□
Q
)
.
Proof
.
iIntros
"(#HsP & #HsQ & #HP)"
.
iApply
(
inv_open'
i
)
.
iSplit
;
first
iExact
"HsP"
.
iIntros
"HiP"
.
iAssert
(
pvs0
(
□
P
★
finished
))
with
"[HiP]"
as
"Hf"
.
{
iDestruct
"HiP"
as
"[Hs | [_ Hf]]"
.
-
iApply
pvs0_frame_l
.
iSplit
;
first
done
.
by
iApply
start_finish
.
-
iApply
pvs0_intro
.
iSplit
;
done
.
}
iVs
"Hf"
as
"[_ #Hf]"
.
iApply
pvs0_intro
.
iSplitL
.
{
iRight
.
eauto
.
}
iApply
(
inv_open'
i
)
.
iSplit
;
first
iExact
"HsQ"
.
iIntros
"[Hs | [#HQ _]]"
.
{
iExFalso
.
iApply
finish_no_start
.
eauto
.
}
iApply
pvs0_intro
.
iSplitL
.
{
iRight
.
eauto
.
}
iApply
pvs1_intro
.
done
.
Qed
.
(*
Now, define:
N(P) := box(P ==> False)
A[i] := Exists P. N(P) * i |-> P
Notice that A[i] => box(A[i]).
OK, now we are going to prove that True ==> False.
First we allocate some k s.t. k |-> A[k], which we know we can do
because of the axiom for |->.
Claim 2: N(A[k]).
Proof:
- Suppose A[k]. So, box(A[k]). So, A[k] * A[k].
- So there is some P s.t. A[k] * N(P) * k |-> P.
- Since k |-> A(k), by Claim 1 we can view shift to P * N(P).
- Hence, we can view shift to False.
QED.
Notice that in Iris proper all we could get on the third line of the
above proof is later(P) * N(P), which would not be enough to derive
the claim.
Claim 3: A[k].
Proof:
- By Claim 2, we have N(A(k)) * k |-> A[k].
- Thus, picking P := A[k], we have Exists P. N(P) * k |-> P, i.e. we have A[k].
QED.
Claim 2 and Claim 3 together view shift to False.
*)
End
inv
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment