Forked from
Iris / Iris
6908 commits behind the upstream repository.
hoare.v 4.35 KiB
From iris.program_logic Require Export weakestpre viewshifts.
Definition ht {Λ Σ} (E : coPset) (P : iProp Λ Σ)
(e : expr Λ) (Φ : val Λ → iProp Λ Σ) : iProp Λ Σ :=
(□ (P → WP e @ E {{ Φ }}))%I.
Instance: Params (@ht) 3.
Notation "{{ P } } e @ E {{ Φ } }" := (ht E P e Φ)
(at level 20, P, e, Φ at level 200,
format "{{ P } } e @ E {{ Φ } }") : uPred_scope.
Notation "{{ P } } e {{ Φ } }" := (ht ⊤ P e Φ)
(at level 20, P, e, Φ at level 200,
format "{{ P } } e {{ Φ } }") : uPred_scope.
Notation "{{ P } } e @ E {{ Φ } }" := (True ⊢ ht E P e Φ)
(at level 20, P, e, Φ at level 200,
format "{{ P } } e @ E {{ Φ } }") : C_scope.
Notation "{{ P } } e {{ Φ } }" := (True ⊢ ht ⊤ P e Φ)
(at level 20, P, e, Φ at level 200,
format "{{ P } } e {{ Φ } }") : C_scope.
Section hoare.
Context {Λ : language} {Σ : iFunctor}.
Implicit Types P Q : iProp Λ Σ.
Implicit Types Φ Ψ : val Λ → iProp Λ Σ.
Implicit Types v : val Λ.
Import uPred.
Global Instance ht_ne E n :
Proper (dist n ==> eq==>pointwise_relation _ (dist n) ==> dist n) (@ht Λ Σ E).
Proof. solve_proper. Qed.
Global Instance ht_proper E :
Proper ((≡) ==> eq ==> pointwise_relation _ (≡) ==> (≡)) (@ht Λ Σ E).
Proof. solve_proper. Qed.
Lemma ht_mono E P P' Φ Φ' e :
P ⊢ P' → (∀ v, Φ' v ⊢ Φ v) → {{ P' }} e @ E {{ Φ' }} ⊢ {{ P }} e @ E {{ Φ }}.
Proof. by intros; apply always_mono, impl_mono, wp_mono. Qed.
Global Instance ht_mono' E :
Proper (flip (⊢) ==> eq ==> pointwise_relation _ (⊢) ==> (⊢)) (@ht Λ Σ E).
Proof. solve_proper. Qed.
Lemma ht_alt E P Φ e : (P ⊢ WP e @ E {{ Φ }}) → {{ P }} e @ E {{ Φ }}.
Proof.
intros; rewrite -{1}always_const. apply: always_intro. apply impl_intro_l.
by rewrite always_const right_id.
Qed.
Lemma ht_val E v :
{{ True : iProp Λ Σ }} of_val v @ E {{ λ v', v = v' }}.
Proof. apply ht_alt. by rewrite -wp_value'; apply const_intro. Qed.
Lemma ht_vs E P P' Φ Φ' e :
((P ={E}=> P') ∧ {{ P' }} e @ E {{ Φ' }} ∧ ∀ v, Φ' v ={E}=> Φ v)
⊢ {{ P }} e @ E {{ Φ }}.
Proof.
apply: always_intro. apply impl_intro_l.
rewrite (assoc _ P) {1}/vs always_elim impl_elim_r.
rewrite assoc pvs_impl_r pvs_always_r wp_always_r.
rewrite -(pvs_wp E e Φ) -(wp_pvs E e Φ); apply pvs_mono, wp_mono=> v.
by rewrite (forall_elim v) {1}/vs always_elim impl_elim_r.
Qed.
Lemma ht_atomic E1 E2 P P' Φ Φ' e :
E2 ⊆ E1 → atomic e →
((P ={E1,E2}=> P') ∧ {{ P' }} e @ E2 {{ Φ' }} ∧ ∀ v, Φ' v ={E2,E1}=> Φ v)
⊢ {{ P }} e @ E1 {{ Φ }}.
Proof.
intros ??; apply: always_intro. apply impl_intro_l.
rewrite (assoc _ P) {1}/vs always_elim impl_elim_r.
rewrite assoc pvs_impl_r pvs_always_r wp_always_r.
rewrite -(wp_atomic E1 E2) //; apply pvs_mono, wp_mono=> v.
by rewrite (forall_elim v) {1}/vs always_elim impl_elim_r.
Qed.
Lemma ht_bind `{LanguageCtx Λ K} E P Φ Φ' e :
({{ P }} e @ E {{ Φ }} ∧ ∀ v, {{ Φ v }} K (of_val v) @ E {{ Φ' }})
⊢ {{ P }} K e @ E {{ Φ' }}.
Proof.
intros; apply: always_intro. apply impl_intro_l.
rewrite (assoc _ P) {1}/ht always_elim impl_elim_r.
rewrite wp_always_r -wp_bind //; apply wp_mono=> v.
by rewrite (forall_elim v) /ht always_elim impl_elim_r.
Qed.
Lemma ht_mask_weaken E1 E2 P Φ e :
E1 ⊆ E2 → {{ P }} e @ E1 {{ Φ }} ⊢ {{ P }} e @ E2 {{ Φ }}.
Proof. intros. by apply always_mono, impl_mono, wp_mask_frame_mono. Qed.
Lemma ht_frame_l E P Φ R e :
{{ P }} e @ E {{ Φ }} ⊢ {{ R ★ P }} e @ E {{ λ v, R ★ Φ v }}.
Proof.
apply always_intro', impl_intro_l.
rewrite always_and_sep_r -assoc (sep_and P) always_elim impl_elim_r.
by rewrite wp_frame_l.
Qed.
Lemma ht_frame_r E P Φ R e :
{{ P }} e @ E {{ Φ }} ⊢ {{ P ★ R }} e @ E {{ λ v, Φ v ★ R }}.
Proof. setoid_rewrite (comm _ _ R); apply ht_frame_l. Qed.
Lemma ht_frame_step_l E P R e Φ :
to_val e = None →
{{ P }} e @ E {{ Φ }} ⊢ {{ ▷ R ★ P }} e @ E {{ λ v, R ★ Φ v }}.
Proof.
intros; apply always_intro', impl_intro_l.
rewrite always_and_sep_r -assoc (sep_and P) always_elim impl_elim_r.
by rewrite wp_frame_step_l //; apply wp_mono=>v; rewrite pvs_frame_l.
Qed.
Lemma ht_frame_step_r E P Φ R e :
to_val e = None →
{{ P }} e @ E {{ Φ }} ⊢ {{ P ★ ▷ R }} e @ E {{ λ v, Φ v ★ R }}.
Proof.
rewrite (comm _ _ (▷ R)%I); setoid_rewrite (comm _ _ R).
apply ht_frame_step_l.
Qed.
End hoare.