Forked from
Iris / Iris
6150 commits behind the upstream repository.
-
Robbert Krebbers authored
NB: these scopes delimiters were already there before Janno's a0067662.
Robbert Krebbers authoredNB: these scopes delimiters were already there before Janno's a0067662.
ticket_lock.v 6.85 KiB
From iris.program_logic Require Export weakestpre.
From iris.heap_lang Require Export lang.
From iris.program_logic Require Import auth.
From iris.proofmode Require Import invariants.
From iris.heap_lang Require Import proofmode notation.
From iris.algebra Require Import gset.
Import uPred.
Definition wait_loop: val :=
rec: "wait_loop" "x" "lock" :=
let: "o" := !(Fst "lock") in
if: "x" = "o"
then #() (* my turn *)
else "wait_loop" "x" "lock".
Definition newlock : val := λ: <>, ((* owner *) ref #0, (* next *) ref #0).
Definition acquire : val :=
rec: "acquire" "lock" :=
let: "n" := !(Snd "lock") in
if: CAS (Snd "lock") "n" ("n" + #1)
then wait_loop "n" "lock"
else "acquire" "lock".
Definition release : val :=
rec: "release" "lock" :=
let: "o" := !(Fst "lock") in
if: CAS (Fst "lock") "o" ("o" + #1)
then #()
else "release" "lock".
Global Opaque newlock acquire release wait_loop.
(** The CMRAs we need. *)
Class tlockG Σ := TlockG {
tlock_G :> authG Σ (gset_disjUR nat);
tlock_exclG :> inG Σ (exclR unitC)
}.
Definition tlockΣ : gFunctors :=
#[authΣ (gset_disjUR nat); GFunctor (constRF (exclR unitC))].
Instance subG_tlockΣ {Σ} : subG tlockΣ Σ → tlockG Σ.
Proof. intros [? [?%subG_inG _]%subG_inv]%subG_inv. split; apply _. Qed.
Section proof.
Context `{!heapG Σ, !tlockG Σ} (N : namespace) (HN: heapN ⊥ N).
Definition tickets_inv (n: nat) (gs: gset_disjUR nat) : iProp Σ :=
(gs = GSet (seq_set 0 n))%I.
Definition lock_inv (γ1 γ2: gname) (lo ln: loc) (R : iProp Σ) : iProp Σ :=
(∃ (o n: nat),
lo ↦ #o ★ ln ↦ #n ★
auth_inv γ1 (tickets_inv n) ★
((own γ2 (Excl ()) ★ R) ∨ auth_own γ1 (GSet {[ o ]})))%I.
Definition is_lock (l: val) (R: iProp Σ) : iProp Σ :=
(∃ γ1 γ2 (lo ln: loc), heap_ctx ∧ l = (#lo, #ln)%V ∧ inv N (lock_inv γ1 γ2 lo ln R))%I.
Definition issued (l : val) (x: nat) (R : iProp Σ) : iProp Σ :=
(∃ γ1 γ2 (lo ln: loc), heap_ctx ∧ l = (#lo, #ln)%V ∧ inv N (lock_inv γ1 γ2 lo ln R) ∧
auth_own γ1 (GSet {[ x ]}))%I.
Definition locked (l : val) (R : iProp Σ) : iProp Σ :=
(∃ γ1 γ2 (lo ln: loc), heap_ctx ∧ l = (#lo, #ln)%V ∧ inv N (lock_inv γ1 γ2 lo ln R) ∧
own γ2 (Excl ()))%I.
Global Instance lock_inv_ne n γ1 γ2 lo ln: Proper (dist n ==> dist n) (lock_inv γ1 γ2 lo ln).
Proof. solve_proper. Qed.
Global Instance is_lock_ne n l: Proper (dist n ==> dist n) (is_lock l).
Proof. solve_proper. Qed.
Global Instance locked_ne n l: Proper (dist n ==> dist n) (locked l).
Proof. solve_proper. Qed.
Global Instance is_lock_persistent l R : PersistentP (is_lock l R).
Proof. apply _. Qed.
Lemma newlock_spec (R : iProp Σ) Φ :
heap_ctx ★ R ★ (∀ l, is_lock l R -★ Φ l) ⊢ WP newlock #() {{ Φ }}.
Proof.
iIntros "(#Hh & HR & HΦ)". rewrite /newlock /=.
wp_seq. wp_alloc lo as "Hlo". wp_alloc ln as "Hln".
iVs (own_alloc (Excl ())) as (γ2) "Hγ2"; first done.
iVs (own_alloc_strong (Auth (Excl' ∅) ∅) {[ γ2 ]}) as (γ1) "[% Hγ1]"; first done.
iVs (inv_alloc N _ (lock_inv γ1 γ2 lo ln R) with "[-HΦ]").
{ iNext. rewrite /lock_inv.
iExists 0%nat, 0%nat.
iFrame.
iSplitL "Hγ1".
{ rewrite /auth_inv.
iExists (GSet ∅).
by iFrame. }
iLeft.
by iFrame. }
iVsIntro.
iApply "HΦ".
iExists γ1, γ2, lo, ln.
iSplit; by auto.
Qed.
Lemma wait_loop_spec l x R (Φ : val → iProp Σ) :
issued l x R ★ (∀ l, locked l R -★ R -★ Φ #()) ⊢ WP wait_loop #x l {{ Φ }}.
Proof.
iIntros "[Hl HΦ]". iDestruct "Hl" as (γ1 γ2 lo ln) "(#? & % & #? & Ht)".
iLöb as "IH". wp_rec. subst. wp_let. wp_proj. wp_bind (! _)%E.
iInv N as (o n) "[Hlo [Hln Ha]]" "Hclose".
wp_load. destruct (decide (x = o)) as [->|Hneq].
- iDestruct "Ha" as "[Hainv [[Ho HR] | Haown]]".
+ iVs ("Hclose" with "[Hlo Hln Hainv Ht]").
{ iNext. iExists o, n. iFrame. eauto. }
iVsIntro. wp_let. wp_op=>[_|[]] //.
wp_if. iVsIntro.
iApply ("HΦ" with "[-HR] HR"). iExists γ1, γ2, lo, ln; eauto.
+ iExFalso. iCombine "Ht" "Haown" as "Haown".
iDestruct (auth_own_valid with "Haown") as % ?%gset_disj_valid_op.
set_solver.
- iVs ("Hclose" with "[Hlo Hln Ha]").
{ iNext. iExists o, n. by iFrame. }
iVsIntro. wp_let. wp_op=>[[/Nat2Z.inj //]|?].
wp_if. iApply ("IH" with "Ht"). by iExact "HΦ".
Qed.
Lemma acquire_spec l R (Φ : val → iProp Σ) :
is_lock l R ★ (∀ l, locked l R -★ R -★ Φ #()) ⊢ WP acquire l {{ Φ }}.
Proof.
iIntros "[Hl HΦ]". iDestruct "Hl" as (γ1 γ2 lo ln) "(#? & % & #?)".
iLöb as "IH". wp_rec. wp_bind (! _)%E. subst. wp_proj.
iInv N as (o n) "[Hlo [Hln Ha]]" "Hclose".
wp_load. iVs ("Hclose" with "[Hlo Hln Ha]").
{ iNext. iExists o, n. by iFrame. }
iVsIntro. wp_let. wp_proj. wp_op.
wp_bind (CAS _ _ _).
iInv N as (o' n') "[Hlo' [Hln' [Hainv Haown]]]" "Hclose".
destruct (decide (#n' = #n))%V as [[= ->%Nat2Z.inj] | Hneq].
- wp_cas_suc.
iDestruct "Hainv" as (s) "[Ho %]"; subst.
iVs (own_update with "Ho") as "Ho".
{ eapply auth_update_no_frag, (gset_alloc_empty_local_update n).
rewrite elem_of_seq_set; omega. }
iDestruct "Ho" as "[Hofull Hofrag]".
iVs ("Hclose" with "[Hlo' Hln' Haown Hofull]").
{ rewrite gset_disj_union; last by apply (seq_set_S_disjoint 0).
rewrite -(seq_set_S_union_L 0).
iNext. iExists o', (S n)%nat.
rewrite Nat2Z.inj_succ -Z.add_1_r.
iFrame. iExists (GSet (seq_set 0 (S n))). by iFrame. }
iVsIntro. wp_if.
iApply (wait_loop_spec (#lo, #ln)).
iSplitR "HΦ"; last by done.
rewrite /issued /auth_own; eauto 10.
- wp_cas_fail.
iVs ("Hclose" with "[Hlo' Hln' Hainv Haown]").
{ iNext. iExists o', n'. by iFrame. }
iVsIntro. wp_if. by iApply "IH".
Qed.
Lemma release_spec R l (Φ : val → iProp Σ):
locked l R ★ R ★ Φ #() ⊢ WP release l {{ Φ }}.
Proof.
iIntros "(Hl & HR & HΦ)"; iDestruct "Hl" as (γ1 γ2 lo ln) "(#? & % & #? & Hγ)".
iLöb as "IH". wp_rec. subst. wp_proj. wp_bind (! _)%E.
iInv N as (o n) "[Hlo [Hln Hr]]" "Hclose".
wp_load. iVs ("Hclose" with "[Hlo Hln Hr]").
{ iNext. iExists o, n. by iFrame. }
iVsIntro. wp_let. wp_bind (CAS _ _ _ ).
wp_proj. wp_op.
iInv N as (o' n') "[Hlo' [Hln' Hr]]" "Hclose".
destruct (decide (#o' = #o))%V as [[= ->%Nat2Z.inj ] | Hneq].
- wp_cas_suc.
iDestruct "Hr" as "[Hainv [[Ho _] | Hown]]".
+ iExFalso. iCombine "Hγ" "Ho" as "Ho".
iDestruct (own_valid with "#Ho") as %[].
+ iVs ("Hclose" with "[Hlo' Hln' HR Hγ Hainv]").
{ iNext. iExists (o + 1)%nat, n'%nat.
iFrame. rewrite Nat2Z.inj_add.
iFrame. iLeft; by iFrame. }
iVsIntro. by wp_if.
- wp_cas_fail. iVs ("Hclose" with "[Hlo' Hln' Hr]").
{ iNext. iExists o', n'. by iFrame. }
iVsIntro. wp_if. by iApply ("IH" with "Hγ HR").
Qed.
End proof.
Typeclasses Opaque is_lock issued locked.