Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
iris-coq
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Maxime Dénès
iris-coq
Commits
6b76d292
Commit
6b76d292
authored
9 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
More uniform lemmas for box.
parent
f133c099
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
modures/logic.v
+9
-12
9 additions, 12 deletions
modures/logic.v
with
9 additions
and
12 deletions
modures/logic.v
+
9
−
12
View file @
6b76d292
...
@@ -670,11 +670,11 @@ Lemma always_forall {A} (P : A → uPred M) : (□ ∀ a, P a)%I ≡ (∀ a, □
...
@@ -670,11 +670,11 @@ Lemma always_forall {A} (P : A → uPred M) : (□ ∀ a, P a)%I ≡ (∀ a, □
Proof
.
done
.
Qed
.
Proof
.
done
.
Qed
.
Lemma
always_exist
{
A
}
(
P
:
A
→
uPred
M
)
:
(
□
∃
a
,
P
a
)
%
I
≡
(
∃
a
,
□
P
a
)
%
I
.
Lemma
always_exist
{
A
}
(
P
:
A
→
uPred
M
)
:
(
□
∃
a
,
P
a
)
%
I
≡
(
∃
a
,
□
P
a
)
%
I
.
Proof
.
done
.
Qed
.
Proof
.
done
.
Qed
.
Lemma
always_and_sep
'
P
Q
:
□
(
P
∧
Q
)
⊑
□
(
P
★
Q
)
.
Lemma
always_and_sep
_1
P
Q
:
□
(
P
∧
Q
)
⊑
□
(
P
★
Q
)
.
Proof
.
Proof
.
intros
x
n
?
[??];
exists
(
unit
x
),
(
unit
x
);
rewrite
ra_unit_unit
;
auto
.
intros
x
n
?
[??];
exists
(
unit
x
),
(
unit
x
);
rewrite
ra_unit_unit
;
auto
.
Qed
.
Qed
.
Lemma
always_and_sep_l
P
Q
:
(
□
P
∧
Q
)
⊑
(
□
P
★
Q
)
.
Lemma
always_and_sep_l
_1
P
Q
:
(
□
P
∧
Q
)
⊑
(
□
P
★
Q
)
.
Proof
.
Proof
.
intros
x
n
?
[??];
exists
(
unit
x
),
x
;
simpl
in
*.
intros
x
n
?
[??];
exists
(
unit
x
),
x
;
simpl
in
*.
by
rewrite
ra_unit_l
ra_unit_idempotent
.
by
rewrite
ra_unit_l
ra_unit_idempotent
.
...
@@ -702,21 +702,18 @@ Proof.
...
@@ -702,21 +702,18 @@ Proof.
{
intros
n
;
solve_proper
.
}
{
intros
n
;
solve_proper
.
}
rewrite
-
(
eq_refl
_
True
)
always_const
;
auto
.
rewrite
-
(
eq_refl
_
True
)
always_const
;
auto
.
Qed
.
Qed
.
Lemma
always_and_sep_r
P
Q
:
(
P
∧
□
Q
)
⊑
(
P
★
□
Q
)
.
Lemma
always_and_sep
P
Q
:
(
□
(
P
∧
Q
))
%
I
≡
(
□
(
P
★
Q
))
%
I
.
Proof
.
apply
(
anti_symmetric
(
⊑
));
auto
using
always_and_sep_1
.
Qed
.
Lemma
always_and_sep_l
P
Q
:
(
□
P
∧
Q
)
%
I
≡
(
□
P
★
Q
)
%
I
.
Proof
.
apply
(
anti_symmetric
(
⊑
));
auto
using
always_and_sep_l_1
.
Qed
.
Lemma
always_and_sep_r
P
Q
:
(
P
∧
□
Q
)
%
I
≡
(
P
★
□
Q
)
%
I
.
Proof
.
rewrite
!
(
commutative
_
P
);
apply
always_and_sep_l
.
Qed
.
Proof
.
rewrite
!
(
commutative
_
P
);
apply
always_and_sep_l
.
Qed
.
Lemma
always_sep
P
Q
:
(
□
(
P
★
Q
))
%
I
≡
(
□
P
★
□
Q
)
%
I
.
Lemma
always_sep
P
Q
:
(
□
(
P
★
Q
))
%
I
≡
(
□
P
★
□
Q
)
%
I
.
Proof
.
Proof
.
by
rewrite
-
always_and_sep
-
always_and_sep_l
always_and
.
Qed
.
apply
(
anti_symmetric
(
⊑
))
.
*
rewrite
-
always_and_sep_l
;
auto
.
*
rewrite
-
always_and_sep'
always_and
;
auto
.
Qed
.
Lemma
always_wand
P
Q
:
□
(
P
-★
Q
)
⊑
(
□
P
-★
□
Q
)
.
Lemma
always_wand
P
Q
:
□
(
P
-★
Q
)
⊑
(
□
P
-★
□
Q
)
.
Proof
.
by
apply
wand_intro
;
rewrite
-
always_sep
wand_elim_l
.
Qed
.
Proof
.
by
apply
wand_intro
;
rewrite
-
always_sep
wand_elim_l
.
Qed
.
Lemma
always_sep_and
P
Q
:
(
□
(
P
★
Q
))
%
I
≡
(
□
(
P
∧
Q
))
%
I
.
Proof
.
apply
(
anti_symmetric
(
⊑
));
auto
using
always_and_sep'
.
Qed
.
Lemma
always_sep_dup
P
:
(
□
P
)
%
I
≡
(
□
P
★
□
P
)
%
I
.
Lemma
always_sep_dup
P
:
(
□
P
)
%
I
≡
(
□
P
★
□
P
)
%
I
.
Proof
.
by
rewrite
-
always_sep
always_
sep_and
(
idempotent
_)
.
Qed
.
Proof
.
by
rewrite
-
always_sep
-
always_
and_sep
(
idempotent
_)
.
Qed
.
Lemma
always_wand_impl
P
Q
:
(
□
(
P
-★
Q
))
%
I
≡
(
□
(
P
→
Q
))
%
I
.
Lemma
always_wand_impl
P
Q
:
(
□
(
P
-★
Q
))
%
I
≡
(
□
(
P
→
Q
))
%
I
.
Proof
.
Proof
.
apply
(
anti_symmetric
(
⊑
));
[|
by
rewrite
-
impl_wand
]
.
apply
(
anti_symmetric
(
⊑
));
[|
by
rewrite
-
impl_wand
]
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment