Skip to content
Snippets Groups Projects
Commit 2bc880b2 authored by Ralf Jung's avatar Ralf Jung
Browse files

move error into regular .v file

parent 59d18188
No related branches found
No related tags found
No related merge requests found
......@@ -166,6 +166,7 @@ iris_heap_lang/lib/increment.v
iris_heap_lang/lib/diverge.v
iris_heap_lang/lib/arith.v
iris_heap_lang/lib/array.v
iris_heap_lang/lib/one_shot.v
iris_deprecated/base_logic/auth.v
iris_deprecated/base_logic/sts.v
......
From iris.algebra Require Import excl agree csum.
From iris.proofmode Require Import tactics.
From iris.program_logic Require Export weakestpre.
From iris.deprecated.program_logic Require Import hoare.
From iris.heap_lang Require Export lang.
From iris.heap_lang Require Import assert proofmode notation adequacy.
From iris.heap_lang.lib Require Import par.
Set Default Proof Using "Type".
(** This is the introductory example from the "Iris from the Ground Up" journal
paper. *)
Unset Mangle Names.
Definition one_shot_example : val := λ: <>,
let: "x" := ref NONE in (
(* tryset *) (λ: "n",
CAS "x" NONE (SOME "n")),
(* check *) (λ: <>,
let: "y" := !"x" in λ: <>,
match: "y" with
NONE => #()
| SOME "n" =>
match: !"x" with
NONE => assert: #false
| SOME "m" => assert: "n" = "m"
end
end)).
Definition one_shotR := csumR (exclR unitO) (agreeR ZO).
Definition Pending : one_shotR := Cinl (Excl ()).
Definition Shot (n : Z) : one_shotR := Cinr (to_agree n).
Class one_shotG Σ := { one_shot_inG :> inG Σ one_shotR }.
Definition one_shotΣ : gFunctors := #[GFunctor one_shotR].
Global Instance subG_one_shotΣ {Σ} : subG one_shotΣ Σ one_shotG Σ.
Proof. solve_inG. Qed.
Section proof.
Local Set Default Proof Using "Type*".
Context `{!heapG Σ, !one_shotG Σ}.
Definition one_shot_inv (γ : gname) (l : loc) : iProp Σ :=
(l NONEV own γ Pending n : Z, l SOMEV #n own γ (Shot n))%I.
Lemma wp_one_shot (Φ : val iProp Σ) :
( f1 f2 : val,
( n : Z, WP f1 #n {{ w, w = #true w = #false }})
WP f2 #() {{ g, WP g #() {{ _, True }} }} -∗ Φ (f1,f2)%V)
WP one_shot_example #() {{ Φ }}.
Proof.
iIntros "Hf /=". pose proof (nroot .@ "N") as N.
wp_lam. wp_alloc l as "Hl".
iMod (own_alloc Pending) as (γ) "Hγ"; first done.
iMod (inv_alloc N _ (one_shot_inv γ l) with "[Hl Hγ]") as "#HN".
{ iNext. iLeft. by iSplitL "Hl". }
wp_pures. iModIntro. iApply "Hf"; iSplit.
- iIntros (n) "!>". wp_lam. wp_pures. wp_bind (CmpXchg _ _ _).
iInv N as ">[[Hl Hγ]|H]"; last iDestruct "H" as (m) "[Hl Hγ]".
+ iMod (own_update with "Hγ") as "Hγ".
{ by apply cmra_update_exclusive with (y:=Shot n). }
wp_cmpxchg_suc. iModIntro. iSplitL; last (wp_pures; by eauto).
iNext; iRight; iExists n; by iFrame.
+ wp_cmpxchg_fail. iModIntro. iSplitL; last (wp_pures; by eauto).
rewrite /one_shot_inv; eauto 10.
- iIntros "!> /=". wp_lam. wp_bind (! _)%E.
iInv N as ">Hγ".
iAssert ( v, l v ((v = NONEV own γ Pending)
n : Z, v = SOMEV #n own γ (Shot n)))%I with "[Hγ]" as "Hv".
{ iDestruct "Hγ" as "[[Hl Hγ]|Hl]"; last iDestruct "Hl" as (m) "[Hl Hγ]".
+ iExists NONEV. iFrame. eauto.
+ iExists (SOMEV #m). iFrame. eauto. }
iDestruct "Hv" as (v) "[Hl Hv]". wp_load.
iAssert (one_shot_inv γ l (v = NONEV n : Z,
v = SOMEV #n own γ (Shot n)))%I with "[Hl Hv]" as "[Hinv #Hv]".
{ iDestruct "Hv" as "[[% ?]|Hv]"; last iDestruct "Hv" as (m) "[% ?]"; subst.
+ iSplit. iLeft; by iSplitL "Hl". eauto.
+ iSplit. iRight; iExists m; by iSplitL "Hl". eauto. }
iSplitL "Hinv"; first by eauto.
iModIntro. wp_pures. iIntros "!> !>". wp_lam.
iDestruct "Hv" as "[%|Hv]"; last iDestruct "Hv" as (m) "[% Hγ']";
subst; wp_match; [done|].
wp_bind (! _)%E.
iInv N as "[[Hl >Hγ]|H]"; last iDestruct "H" as (m') "[Hl Hγ]".
{ by iDestruct (own_valid_2 with "Hγ Hγ'") as %?. }
wp_load.
iDestruct (own_valid_2 with "Hγ Hγ'") as %?%to_agree_op_inv_L; subst.
iModIntro. iSplitL "Hl".
{ iNext; iRight; by eauto. }
wp_smart_apply wp_assert. wp_pures. by case_bool_decide.
Qed.
Lemma ht_one_shot (Φ : val iProp Σ) :
{{ True }} one_shot_example #()
{{ ff,
( n : Z, {{ True }} Fst ff #n {{ w, w = #true w = #false }})
{{ True }} Snd ff #() {{ g, {{ True }} g #() {{ _, True }} }}
}}.
Proof.
iIntros "!> _". iApply wp_one_shot. iIntros (f1 f2) "[#Hf1 #Hf2]"; iSplit.
- iIntros (n) "!> _". wp_smart_apply "Hf1".
- iIntros "!> _". wp_smart_apply (wp_wand with "Hf2"). by iIntros (v) "#? !> _".
Qed.
End proof.
(* Have a client with a closed proof. *)
Definition client : expr :=
let: "ff" := one_shot_example #() in
(Fst "ff" #5 ||| let: "check" := Snd "ff" #() in "check" #()).
Section client.
Context `{!heapG Σ, !one_shotG Σ, !spawnG Σ}.
Lemma client_safe : WP client {{ _, True }}.
Proof using Type*.
rewrite /client. wp_apply wp_one_shot. iIntros (f1 f2) "[#Hf1 #Hf2]".
wp_let. wp_smart_apply wp_par.
- wp_smart_apply "Hf1".
- wp_proj. wp_bind (f2 _)%E. iApply wp_wand; first by iExact "Hf2".
iIntros (check) "Hcheck". wp_pures. iApply "Hcheck".
- auto.
Qed.
End client.
(** Put together all library functors. *)
Definition clientΣ : gFunctors := #[ heapΣ; one_shotΣ; spawnΣ ].
(** This lemma implicitly shows that these functors are enough to meet
all library assumptions. *)
Lemma client_adequate σ : adequate NotStuck client σ (λ _ _, True).
Proof. apply (heap_adequacy clientΣ)=> ?. iIntros "_". iApply client_safe. Qed.
(* Since we check the output of the test files, this means
our test suite will fail if we ever accidentally add an axiom
to anything used by this proof. *)
Print Assumptions client_adequate.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment