Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Rodolphe Lepigre
Iris
Commits
f7dc0953
Commit
f7dc0953
authored
Sep 29, 2017
by
Robbert Krebbers
Browse files
Lifting lemmas for total weakest preconditions.
parent
3b47591b
Changes
3
Hide whitespace changes
Inline
Side-by-side
_CoqProject
View file @
f7dc0953
...
...
@@ -64,6 +64,8 @@ theories/program_logic/ectx_language.v
theories/program_logic/ectxi_language.v
theories/program_logic/ectx_lifting.v
theories/program_logic/ownp.v
theories/program_logic/total_lifting.v
theories/program_logic/total_ectx_lifting.v
theories/heap_lang/lang.v
theories/heap_lang/tactics.v
theories/heap_lang/lifting.v
...
...
theories/program_logic/total_ectx_lifting.v
0 → 100644
View file @
f7dc0953
(** Some derived lemmas for ectx-based languages *)
From
iris
.
program_logic
Require
Export
ectx_language
.
From
iris
.
program_logic
Require
Export
total_weakestpre
total_lifting
.
From
iris
.
proofmode
Require
Import
tactics
.
Set
Default
Proof
Using
"Type"
.
Section
wp
.
Context
{
Λ
:
ectxLanguage
}
`
{
irisG
Λ
Σ
}
{
Hinh
:
Inhabited
(
state
Λ
)}.
Implicit
Types
P
:
iProp
Σ
.
Implicit
Types
Φ
:
val
Λ
→
iProp
Σ
.
Implicit
Types
v
:
val
Λ
.
Implicit
Types
e
:
expr
Λ
.
Hint
Resolve
head_prim_reducible
head_reducible_prim_step
.
Lemma
twp_lift_head_step
{
s
E
Φ
}
e1
:
to_val
e1
=
None
→
(
∀
σ
1
,
state_interp
σ
1
={
E
,
∅
}=
∗
⌜
head_reducible
e1
σ
1
⌝
∗
∀
e2
σ
2
efs
,
⌜
head_step
e1
σ
1 e2
σ
2
efs
⌝
={
∅
,
E
}=
∗
state_interp
σ
2
∗
WP
e2
@
s
;
E
[{
Φ
}]
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
s
;
⊤
[{
_
,
True
}])
⊢
WP
e1
@
s
;
E
[{
Φ
}].
Proof
.
iIntros
(?)
"H"
.
iApply
(
twp_lift_step
_
E
)=>//.
iIntros
(
σ
1
)
"Hσ"
.
iMod
(
"H"
$!
σ
1
with
"Hσ"
)
as
"[% H]"
;
iModIntro
.
iSplit
;
[
destruct
s
;
auto
|].
iIntros
(
e2
σ
2
efs
)
"%"
.
iApply
"H"
.
by
eauto
.
Qed
.
Lemma
twp_lift_pure_head_step
{
s
E
Φ
}
e1
:
(
∀
σ
1
,
head_reducible
e1
σ
1
)
→
(
∀
σ
1 e2
σ
2
efs
,
head_step
e1
σ
1 e2
σ
2
efs
→
σ
1
=
σ
2
)
→
(|={
E
}=>
∀
e2
efs
σ
,
⌜
head_step
e1
σ
e2
σ
efs
⌝
→
WP
e2
@
s
;
E
[{
Φ
}]
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
s
;
⊤
[{
_
,
True
}])
⊢
WP
e1
@
s
;
E
[{
Φ
}].
Proof
using
Hinh
.
iIntros
(??)
">H"
.
iApply
twp_lift_pure_step
;
eauto
.
iIntros
"!>"
(????).
iApply
"H"
;
eauto
.
Qed
.
Lemma
twp_lift_atomic_head_step
{
s
E
Φ
}
e1
:
to_val
e1
=
None
→
(
∀
σ
1
,
state_interp
σ
1
={
E
}=
∗
⌜
head_reducible
e1
σ
1
⌝
∗
∀
e2
σ
2
efs
,
⌜
head_step
e1
σ
1 e2
σ
2
efs
⌝
={
E
}=
∗
state_interp
σ
2
∗
default
False
(
to_val
e2
)
Φ
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
s
;
⊤
[{
_
,
True
}])
⊢
WP
e1
@
s
;
E
[{
Φ
}].
Proof
.
iIntros
(?)
"H"
.
iApply
twp_lift_atomic_step
;
eauto
.
iIntros
(
σ
1
)
"Hσ1"
.
iMod
(
"H"
$!
σ
1
with
"Hσ1"
)
as
"[% H]"
;
iModIntro
.
iSplit
;
first
by
destruct
s
;
auto
.
iIntros
(
e2
σ
2
efs
)
"%"
.
iApply
"H"
;
auto
.
Qed
.
Lemma
twp_lift_atomic_head_step_no_fork
{
s
E
Φ
}
e1
:
to_val
e1
=
None
→
(
∀
σ
1
,
state_interp
σ
1
={
E
}=
∗
⌜
head_reducible
e1
σ
1
⌝
∗
∀
e2
σ
2
efs
,
⌜
head_step
e1
σ
1 e2
σ
2
efs
⌝
={
E
}=
∗
⌜
efs
=
[]
⌝
∗
state_interp
σ
2
∗
default
False
(
to_val
e2
)
Φ
)
⊢
WP
e1
@
s
;
E
[{
Φ
}].
Proof
.
iIntros
(?)
"H"
.
iApply
twp_lift_atomic_head_step
;
eauto
.
iIntros
(
σ
1
)
"Hσ1"
.
iMod
(
"H"
$!
σ
1
with
"Hσ1"
)
as
"[$ H]"
;
iModIntro
.
iIntros
(
v2
σ
2
efs
)
"%"
.
iMod
(
"H"
$!
v2
σ
2
efs
with
"[# //]"
)
as
"(% & $ & $)"
;
subst
;
auto
.
Qed
.
Lemma
twp_lift_pure_det_head_step
{
s
E
Φ
}
e1
e2
efs
:
(
∀
σ
1
,
head_reducible
e1
σ
1
)
→
(
∀
σ
1 e2
'
σ
2
efs'
,
head_step
e1
σ
1 e2
'
σ
2
efs'
→
σ
1
=
σ
2
∧
e2
=
e2'
∧
efs
=
efs'
)
→
(|={
E
}=>
WP
e2
@
s
;
E
[{
Φ
}]
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
s
;
⊤
[{
_
,
True
}])
⊢
WP
e1
@
s
;
E
[{
Φ
}].
Proof
using
Hinh
.
eauto
using
twp_lift_pure_det_step
.
Qed
.
Lemma
twp_lift_pure_det_head_step_no_fork
{
s
E
Φ
}
e1
e2
:
to_val
e1
=
None
→
(
∀
σ
1
,
head_reducible
e1
σ
1
)
→
(
∀
σ
1 e2
'
σ
2
efs'
,
head_step
e1
σ
1 e2
'
σ
2
efs'
→
σ
1
=
σ
2
∧
e2
=
e2'
∧
[]
=
efs'
)
→
WP
e2
@
s
;
E
[{
Φ
}]
⊢
WP
e1
@
s
;
E
[{
Φ
}].
Proof
using
Hinh
.
intros
.
rewrite
-(
twp_lift_pure_det_step
e1
e2
[])
/=
?right_id
;
eauto
.
Qed
.
End
wp
.
theories/program_logic/total_lifting.v
0 → 100644
View file @
f7dc0953
From
iris
.
program_logic
Require
Export
total_weakestpre
.
From
iris
.
base_logic
Require
Export
big_op
.
From
iris
.
proofmode
Require
Import
tactics
.
Set
Default
Proof
Using
"Type"
.
Section
lifting
.
Context
`
{
irisG
Λ
Σ
}.
Implicit
Types
v
:
val
Λ
.
Implicit
Types
e
:
expr
Λ
.
Implicit
Types
σ
:
state
Λ
.
Implicit
Types
P
Q
:
iProp
Σ
.
Implicit
Types
Φ
:
val
Λ
→
iProp
Σ
.
Lemma
twp_lift_step
s
E
Φ
e1
:
to_val
e1
=
None
→
(
∀
σ
1
,
state_interp
σ
1
={
E
,
∅
}=
∗
⌜
if
s
is
NotStuck
then
reducible
e1
σ
1
else
True
⌝
∗
∀
e2
σ
2
efs
,
⌜
prim_step
e1
σ
1 e2
σ
2
efs
⌝
={
∅
,
E
}=
∗
state_interp
σ
2
∗
WP
e2
@
s
;
E
[{
Φ
}]
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
s
;
⊤
[{
_
,
True
}])
⊢
WP
e1
@
s
;
E
[{
Φ
}].
Proof
.
by
rewrite
twp_unfold
/
twp_pre
=>
->.
Qed
.
(** Derived lifting lemmas. *)
Lemma
twp_lift_pure_step
`
{
Inhabited
(
state
Λ
)}
s
E
Φ
e1
:
(
∀
σ
1
,
reducible
e1
σ
1
)
→
(
∀
σ
1 e2
σ
2
efs
,
prim_step
e1
σ
1 e2
σ
2
efs
→
σ
1
=
σ
2
)
→
(|={
E
}=>
∀
e2
efs
σ
,
⌜
prim_step
e1
σ
e2
σ
efs
⌝
→
WP
e2
@
s
;
E
[{
Φ
}]
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
s
;
⊤
[{
_
,
True
}])
⊢
WP
e1
@
s
;
E
[{
Φ
}].
Proof
.
iIntros
(
Hsafe
Hstep
)
"H"
.
iApply
twp_lift_step
.
{
eapply
reducible_not_val
,
(
Hsafe
inhabitant
).
}
iIntros
(
σ
1
)
"Hσ"
.
iMod
"H"
.
iMod
fupd_intro_mask'
as
"Hclose"
;
last
iModIntro
;
first
set_solver
.
iSplit
;
[
by
destruct
s
|]
;
iIntros
(
e2
σ
2
efs
?).
destruct
(
Hstep
σ
1 e2
σ
2
efs
)
;
auto
;
subst
.
iMod
"Hclose"
as
"_"
.
iFrame
"Hσ"
.
iApply
"H"
;
auto
.
Qed
.
(* Atomic steps don't need any mask-changing business here, one can
use the generic lemmas here. *)
Lemma
twp_lift_atomic_step
{
s
E
Φ
}
e1
:
to_val
e1
=
None
→
(
∀
σ
1
,
state_interp
σ
1
={
E
}=
∗
⌜
if
s
is
NotStuck
then
reducible
e1
σ
1
else
True
⌝
∗
∀
e2
σ
2
efs
,
⌜
prim_step
e1
σ
1 e2
σ
2
efs
⌝
={
E
}=
∗
state_interp
σ
2
∗
default
False
(
to_val
e2
)
Φ
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
s
;
⊤
[{
_
,
True
}])
⊢
WP
e1
@
s
;
E
[{
Φ
}].
Proof
.
iIntros
(?)
"H"
.
iApply
(
twp_lift_step
_
E
_
e1
)=>//
;
iIntros
(
σ
1
)
"Hσ1"
.
iMod
(
"H"
$!
σ
1
with
"Hσ1"
)
as
"[$ H]"
.
iMod
(
fupd_intro_mask'
E
∅
)
as
"Hclose"
;
first
set_solver
.
iIntros
"!>"
(
e2
σ
2
efs
)
"%"
.
iMod
"Hclose"
as
"_"
.
iMod
(
"H"
$!
e2
σ
2
efs
with
"[#]"
)
as
"($ & HΦ & $)"
;
first
by
eauto
.
destruct
(
to_val
e2
)
eqn
:
?
;
last
by
iExFalso
.
by
iApply
twp_value
.
Qed
.
Lemma
twp_lift_pure_det_step
`
{
Inhabited
(
state
Λ
)}
{
s
E
Φ
}
e1
e2
efs
:
(
∀
σ
1
,
reducible
e1
σ
1
)
→
(
∀
σ
1 e2
'
σ
2
efs'
,
prim_step
e1
σ
1 e2
'
σ
2
efs'
→
σ
1
=
σ
2
∧
e2
=
e2'
∧
efs
=
efs'
)
→
(|={
E
}=>
WP
e2
@
s
;
E
[{
Φ
}]
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
s
;
⊤
[{
_
,
True
}])
⊢
WP
e1
@
s
;
E
[{
Φ
}].
Proof
.
iIntros
(?
Hpuredet
)
">H"
.
iApply
(
twp_lift_pure_step
_
E
)
;
try
done
.
{
by
intros
;
eapply
Hpuredet
.
}
by
iIntros
"!>"
(
e'
efs'
σ
(
_
&->&->)%
Hpuredet
).
Qed
.
Lemma
twp_pure_step
`
{
Inhabited
(
state
Λ
)}
s
E
e1
e2
φ
Φ
:
PureExec
φ
e1
e2
→
φ
→
WP
e2
@
s
;
E
[{
Φ
}]
⊢
WP
e1
@
s
;
E
[{
Φ
}].
Proof
.
iIntros
([??]
H
φ
)
"HWP"
.
iApply
(
twp_lift_pure_det_step
with
"[HWP]"
)
;
[
eauto
|
naive_solver
|
auto
].
Qed
.
End
lifting
.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment