Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Rodolphe Lepigre
Iris
Commits
ed383a77
Commit
ed383a77
authored
Oct 13, 2016
by
Ralf Jung
Browse files
Make everything compile with Coq 8.6
parent
a5f94780
Changes
3
Hide whitespace changes
Inline
Side-by-side
prelude/list.v
View file @
ed383a77
...
...
@@ -2234,7 +2234,12 @@ Section Forall_Exists.
Lemma
not_Forall_Exists
l
:
¬
Forall
P
l
→
Exists
(
not
∘
P
)
l
.
Proof
.
intro
.
destruct
(
Forall_Exists_dec
dec
l
)
;
intuition
.
Qed
.
Lemma
not_Exists_Forall
l
:
¬
Exists
P
l
→
Forall
(
not
∘
P
)
l
.
Proof
.
by
destruct
(
Forall_Exists_dec
(
λ
x
,
swap_if
(
decide
(
P
x
)))
l
).
Qed
.
Proof
.
(* TODO: Coq 8.6 needs type annotation here, Coq 8.5 did not.
Should we report this? *)
by
destruct
(@
Forall_Exists_dec
(
not
∘
P
)
_
(
λ
x
:
A
,
swap_if
(
decide
(
P
x
)))
l
).
Qed
.
Global
Instance
Forall_dec
l
:
Decision
(
Forall
P
l
)
:
=
match
Forall_Exists_dec
dec
l
with
|
left
H
=>
left
H
...
...
program_logic/namespaces.v
View file @
ed383a77
...
...
@@ -52,7 +52,8 @@ Section ndisjoint.
Lemma
ndot_ne_disjoint
N
x
y
:
x
≠
y
→
N
.@
x
⊥
N
.@
y
.
Proof
.
intros
Hxy
a
.
rewrite
!
nclose_eq
!
elem_coPset_suffixes
!
ndot_eq
.
intros
[
qx
->]
[
qy
].
by
intros
[=
?%
encode_inj
]%
list_encode_suffix_eq
.
intros
[
qx
->]
[
qy
Hqy
].
revert
Hqy
.
by
intros
[=
?%
encode_inj
]%
list_encode_suffix_eq
.
Qed
.
Lemma
ndot_preserve_disjoint_l
N
E
x
:
nclose
N
⊥
E
→
nclose
(
N
.@
x
)
⊥
E
.
...
...
proofmode/tactics.v
View file @
ed383a77
...
...
@@ -834,7 +834,7 @@ Tactic Notation "iRevertIntros" constr(Hs) "with" tactic(tac) :=
|
ESelName
?p
?H
::
?Hs
=>
iRevert
H
;
go
Hs
;
let
H'
:
=
match
p
with
true
=>
constr
:
[
IAlwaysElim
(
IName
H
)]
|
false
=>
H
end
in
match
p
with
true
=>
constr
:
(
[
IAlwaysElim
(
IName
H
)]
)
|
false
=>
H
end
in
iIntros
H'
end
in
iElaborateSelPat
Hs
go
.
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment