Skip to content
Snippets Groups Projects
Commit c9e43f41 authored by Ralf Jung's avatar Ralf Jung
Browse files

remove a now-unnecessary, overly specific lemma

parent 3fde0893
No related branches found
No related tags found
No related merge requests found
...@@ -750,17 +750,6 @@ Proof. ...@@ -750,17 +750,6 @@ Proof.
apply and_intro; first by eauto. apply and_intro; first by eauto.
by rewrite {1}(later_intro P) later_impl impl_elim_r. by rewrite {1}(later_intro P) later_impl impl_elim_r.
Qed. Qed.
Lemma löb_all_1 {A} (Φ Ψ : A uPred M) :
( a, ( ( b, Φ b Ψ b) Φ a) Ψ a) a, Φ a Ψ a.
Proof.
intros Hlöb a.
(* Part I: Revert all the bits we need for the induction into the conclusion. *)
apply impl_entails.
rewrite -[(Φ a Ψ a)%I](forall_elim (Ψ := λ a, Φ a Ψ a)%I a). clear a.
(* Part II: Perform induction. *)
apply löb_strong, forall_intro=>a. apply impl_intro_r.
by rewrite left_id Hlöb.
Qed.
(* Always *) (* Always *)
Lemma always_const φ : ( φ : uPred M)%I ( φ)%I. Lemma always_const φ : ( φ : uPred M)%I ( φ)%I.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment