Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Rodolphe Lepigre
Iris
Commits
b59ddcd1
Commit
b59ddcd1
authored
Aug 28, 2017
by
Robbert Krebbers
Browse files
Make it possible to introduce □ ⌜ φ ⌝ as a pure hypothesis.
parent
e128f6fb
Changes
2
Hide whitespace changes
Inline
Side-by-side
theories/proofmode/class_instances.v
View file @
b59ddcd1
...
...
@@ -48,6 +48,9 @@ Global Instance into_pure_cmra_valid `{CMRADiscrete A} (a : A) :
@
IntoPure
M
(
✓
a
)
(
✓
a
).
Proof
.
by
rewrite
/
IntoPure
discrete_valid
.
Qed
.
Global
Instance
into_pure_always
P
φ
:
IntoPure
P
φ
→
IntoPure
(
□
P
)
φ
.
Proof
.
rewrite
/
IntoPure
=>
->.
by
rewrite
always_pure
.
Qed
.
Global
Instance
into_pure_pure_and
(
φ
1
φ
2
:
Prop
)
P1
P2
:
IntoPure
P1
φ
1
→
IntoPure
P2
φ
2
→
IntoPure
(
P1
∧
P2
)
(
φ
1
∧
φ
2
).
Proof
.
rewrite
/
IntoPure
pure_and
.
by
intros
->
->.
Qed
.
...
...
theories/tests/proofmode.v
View file @
b59ddcd1
...
...
@@ -80,6 +80,9 @@ Qed.
Lemma
test_iIntros_persistent
P
Q
`
{!
PersistentP
Q
}
:
(
P
→
Q
→
P
∗
Q
)%
I
.
Proof
.
iIntros
"H1 H2"
.
by
iFrame
.
Qed
.
Lemma
test_iIntros_pure
(
ψ
φ
:
Prop
)
P
:
ψ
→
(
⌜
φ
⌝
→
P
→
⌜
φ
∧
ψ
⌝
∧
P
)%
I
.
Proof
.
iIntros
(??)
"H"
.
auto
.
Qed
.
Lemma
test_fast_iIntros
P
Q
:
(
∀
x
y
z
:
nat
,
⌜
x
=
plus
0
x
⌝
→
⌜
y
=
0
⌝
→
⌜
z
=
0
⌝
→
P
→
□
Q
→
foo
(
x
≡
x
))%
I
.
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment