Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Rodolphe Lepigre
Iris
Commits
a9fb187b
Commit
a9fb187b
authored
Feb 10, 2017
by
Robbert Krebbers
Browse files
More support for constucting isomorphic COFEs.
parent
717c38f4
Changes
2
Hide whitespace changes
Inline
Side-by-side
theories/algebra/excl.v
View file @
a9fb187b
...
...
@@ -54,8 +54,9 @@ Canonical Structure exclC : ofeT := OfeT (excl A) excl_ofe_mixin.
Global
Instance
excl_cofe
`
{
Cofe
A
}
:
Cofe
exclC
.
Proof
.
apply
(
iso_cofe
(
from_option
Excl
ExclBot
)
(
maybe
Excl
))
;
[
by
destruct
1
;
constructor
..|
by
intros
[]
;
constructor
].
apply
(
iso_cofe
(
from_option
Excl
ExclBot
)
(
maybe
Excl
)).
-
by
intros
n
[
a
|]
[
b
|]
;
split
;
inversion_clear
1
;
constructor
.
-
by
intros
[]
;
constructor
.
Qed
.
Global
Instance
excl_discrete
:
Discrete
A
→
Discrete
exclC
.
...
...
theories/algebra/ofe.v
View file @
a9fb187b
...
...
@@ -553,26 +553,6 @@ Section unit.
Proof
.
done
.
Qed
.
End
unit
.
Lemma
iso_ofe_mixin
{
A
:
ofeT
}
`
{
Equiv
B
,
Dist
B
}
(
g
:
B
→
A
)
(
g_equiv
:
∀
y1
y2
,
y1
≡
y2
↔
g
y1
≡
g
y2
)
(
g_dist
:
∀
n
y1
y2
,
y1
≡
{
n
}
≡
y2
↔
g
y1
≡
{
n
}
≡
g
y2
)
:
OfeMixin
B
.
Proof
.
split
.
-
intros
y1
y2
.
rewrite
g_equiv
.
setoid_rewrite
g_dist
.
apply
equiv_dist
.
-
split
.
+
intros
y
.
by
apply
g_dist
.
+
intros
y1
y2
.
by
rewrite
!
g_dist
.
+
intros
y1
y2
y3
.
rewrite
!
g_dist
.
intros
??
;
etrans
;
eauto
.
-
intros
n
y1
y2
.
rewrite
!
g_dist
.
apply
dist_S
.
Qed
.
Program
Definition
iso_cofe
{
A
B
:
ofeT
}
`
{
Cofe
A
}
(
f
:
A
→
B
)
(
g
:
B
→
A
)
`
(!
NonExpansive
g
,
!
NonExpansive
f
)
(
fg
:
∀
y
,
f
(
g
y
)
≡
y
)
:
Cofe
B
:
=
{|
compl
c
:
=
f
(
compl
(
chain_map
g
c
))
|}.
Next
Obligation
.
intros
A
B
?
f
g
??
fg
n
c
.
by
rewrite
/=
conv_compl
/=
fg
.
Qed
.
(** Product *)
Section
product
.
Context
{
A
B
:
ofeT
}.
...
...
@@ -1071,7 +1051,7 @@ Proof.
destruct
n
as
[|
n
]
;
simpl
in
*
;
first
done
.
apply
cFunctor_ne
,
Hfg
.
Qed
.
(**
Sigma
*)
(**
Limit preserving predicates
*)
Class
LimitPreserving
`
{!
Cofe
A
}
(
P
:
A
→
Prop
)
:
Prop
:
=
limit_preserving
(
c
:
chain
A
)
:
(
∀
n
,
P
(
c
n
))
→
P
(
compl
c
).
Hint
Mode
LimitPreserving
+
+
!
:
typeclass_instances
.
...
...
@@ -1098,6 +1078,43 @@ Section limit_preserving.
Qed
.
End
limit_preserving
.
(** Constructing isomorphic OFEs *)
Lemma
iso_ofe_mixin
{
A
:
ofeT
}
`
{
Equiv
B
,
Dist
B
}
(
g
:
B
→
A
)
(
g_equiv
:
∀
y1
y2
,
y1
≡
y2
↔
g
y1
≡
g
y2
)
(
g_dist
:
∀
n
y1
y2
,
y1
≡
{
n
}
≡
y2
↔
g
y1
≡
{
n
}
≡
g
y2
)
:
OfeMixin
B
.
Proof
.
split
.
-
intros
y1
y2
.
rewrite
g_equiv
.
setoid_rewrite
g_dist
.
apply
equiv_dist
.
-
split
.
+
intros
y
.
by
apply
g_dist
.
+
intros
y1
y2
.
by
rewrite
!
g_dist
.
+
intros
y1
y2
y3
.
rewrite
!
g_dist
.
intros
??
;
etrans
;
eauto
.
-
intros
n
y1
y2
.
rewrite
!
g_dist
.
apply
dist_S
.
Qed
.
Program
Definition
iso_cofe_subtype
{
A
B
:
ofeT
}
`
{
Cofe
A
}
(
P
:
A
→
Prop
)
`
{!
LimitPreserving
P
}
(
f
:
∀
x
,
P
x
→
B
)
(
g
:
B
→
A
)
(
Pg
:
∀
y
,
P
(
g
y
))
(
g_dist
:
∀
n
y1
y2
,
y1
≡
{
n
}
≡
y2
↔
g
y1
≡
{
n
}
≡
g
y2
)
(
gf
:
∀
x
Hx
,
g
(
f
x
Hx
)
≡
x
)
:
Cofe
B
:
=
let
_
:
NonExpansive
g
:
=
_
in
{|
compl
c
:
=
f
(
compl
(
chain_map
g
c
))
_
|}.
Next
Obligation
.
intros
A
B
?
P
_
f
g
_
g_dist
_
n
y1
y2
.
apply
g_dist
.
Qed
.
Next
Obligation
.
intros
A
B
?
P
?
f
g
?
g_dist
gf
?
c
.
apply
limit_preserving
=>
n
.
apply
Pg
.
Qed
.
Next
Obligation
.
intros
A
B
?
P
?
f
g
?
g_dist
gf
?
n
c
;
simpl
.
apply
g_dist
.
by
rewrite
gf
conv_compl
.
Qed
.
Definition
iso_cofe
{
A
B
:
ofeT
}
`
{
Cofe
A
}
(
f
:
A
→
B
)
(
g
:
B
→
A
)
(
g_dist
:
∀
n
y1
y2
,
y1
≡
{
n
}
≡
y2
↔
g
y1
≡
{
n
}
≡
g
y2
)
(
gf
:
∀
x
,
g
(
f
x
)
≡
x
)
:
Cofe
B
.
Proof
.
by
apply
(
iso_cofe_subtype
(
λ
_
,
True
)
(
λ
x
_
,
f
x
)
g
).
Qed
.
(** Sigma *)
Section
sigma
.
Context
{
A
:
ofeT
}
{
P
:
A
→
Prop
}.
Implicit
Types
x
:
sig
P
.
...
...
@@ -1120,16 +1137,8 @@ Section sigma.
Proof
.
by
apply
(
iso_ofe_mixin
proj1_sig
).
Qed
.
Canonical
Structure
sigC
:
ofeT
:
=
OfeT
(
sig
P
)
sig_ofe_mixin
.
(* FIXME: WTF, it seems that within these braces {...} the ofe argument of LimitPreserving
suddenly becomes explicit...? *)
Program
Definition
sig_compl
`
{
LimitPreserving
_
P
}
:
Compl
sigC
:
=
λ
c
,
exist
P
(
compl
(
chain_map
proj1_sig
c
))
_
.
Next
Obligation
.
intros
?
Hlim
c
.
apply
Hlim
=>
n
/=.
by
destruct
(
c
n
).
Qed
.
Program
Definition
sig_cofe
`
{
Cofe
A
,
!
LimitPreserving
P
}
:
Cofe
sigC
:
=
{|
compl
:
=
sig_compl
|}.
Next
Obligation
.
intros
??
n
c
.
apply
(
conv_compl
n
(
chain_map
proj1_sig
c
)).
Qed
.
Global
Instance
sig_cofe
`
{
Cofe
A
,
!
LimitPreserving
P
}
:
Cofe
sigC
.
Proof
.
by
apply
(
iso_cofe_subtype
P
(
exist
P
)
proj1_sig
proj2_sig
).
Qed
.
Global
Instance
sig_timeless
(
x
:
sig
P
)
:
Timeless
(
`
x
)
→
Timeless
x
.
Proof
.
intros
?
y
.
rewrite
sig_dist_alt
sig_equiv_alt
.
apply
(
timeless
_
).
Qed
.
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment