Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
7
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Rodolphe Lepigre
Iris
Commits
a89818de
Commit
a89818de
authored
Jan 14, 2016
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Construction of the Iris model.
parent
1d6f0ead
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
237 additions
and
0 deletions
+237
-0
iris/model.v
iris/model.v
+237
-0
No files found.
iris/model.v
0 → 100644
View file @
a89818de
Require
Export
modures
.
logic
modures
.
cmra
.
Require
Export
modures
.
fin_maps
modures
.
agree
modures
.
excl
.
Require
Import
modures
.
cofe_solver
.
(* Parameter *)
Record
iParam
:
=
IParam
{
istate
:
Type
;
icmra
:
cofeT
→
cmraT
;
icmra_empty
A
:
Empty
(
icmra
A
)
;
icmra_empty_spec
A
:
RAIdentity
(
icmra
A
)
;
icmra_map
{
A
B
}
(
f
:
A
-
n
>
B
)
:
icmra
A
-
n
>
icmra
B
;
icmra_map_ne
{
A
B
}
n
:
Proper
(
dist
n
==>
dist
n
)
(@
icmra_map
A
B
)
;
icmra_map_id
{
A
:
cofeT
}
(
x
:
icmra
A
)
:
icmra_map
cid
x
≡
x
;
icmra_map_compose
{
A
B
C
}
(
f
:
A
-
n
>
B
)
(
g
:
B
-
n
>
C
)
x
:
icmra_map
(
g
◎
f
)
x
≡
icmra_map
g
(
icmra_map
f
x
)
;
icmra_map_mono
{
A
B
}
(
f
:
A
-
n
>
B
)
:
CMRAMonotone
(
icmra_map
f
)
}.
Existing
Instances
icmra_empty
icmra_empty_spec
icmra_map_ne
icmra_map_mono
.
Lemma
icmra_map_ext
(
Σ
:
iParam
)
{
A
B
}
(
f
g
:
A
-
n
>
B
)
m
:
(
∀
x
,
f
x
≡
g
x
)
→
icmra_map
Σ
f
m
≡
icmra_map
Σ
g
m
.
Proof
.
by
intros
?
;
apply
equiv_dist
=>
n
;
apply
icmra_map_ne
=>
?
;
apply
equiv_dist
.
Qed
.
(* Resources *)
Record
res
(
Σ
:
iParam
)
(
A
:
cofeT
)
:
=
Res
{
wld
:
gmap
positive
(
agree
(
later
A
))
;
pst
:
excl
(
leibnizC
(
istate
Σ
))
;
gst
:
icmra
Σ
(
laterC
A
)
;
}.
Add
Printing
Constructor
res
.
Arguments
Res
{
_
_
}
_
_
_
.
Arguments
wld
{
_
_
}
_
.
Arguments
pst
{
_
_
}
_
.
Arguments
gst
{
_
_
}
_
.
Instance
:
Params
(@
Res
)
2
.
Instance
:
Params
(@
wld
)
2
.
Instance
:
Params
(@
pst
)
2
.
Instance
:
Params
(@
gst
)
2
.
Section
res
.
Context
(
Σ
:
iParam
)
(
A
:
cofeT
).
Implicit
Types
r
:
res
Σ
A
.
Instance
res_equiv
:
Equiv
(
res
Σ
A
)
:
=
λ
r1
r2
,
wld
r1
≡
wld
r2
∧
pst
r1
≡
pst
r2
∧
gst
r1
≡
gst
r2
.
Instance
res_dist
:
Dist
(
res
Σ
A
)
:
=
λ
n
r1
r2
,
wld
r1
={
n
}=
wld
r2
∧
pst
r1
={
n
}=
pst
r2
∧
gst
r1
={
n
}=
gst
r2
.
Global
Instance
Res_ne
n
:
Proper
(
dist
n
==>
dist
n
==>
dist
n
==>
dist
n
)
(@
Res
Σ
A
).
Proof
.
done
.
Qed
.
Global
Instance
Res_proper
:
Proper
((
≡
)
==>
(
≡
)
==>
(
≡
)
==>
(
≡
))
(@
Res
Σ
A
).
Proof
.
done
.
Qed
.
Global
Instance
wld_ne
n
:
Proper
(
dist
n
==>
dist
n
)
(@
wld
Σ
A
).
Proof
.
by
intros
r1
r2
(?&?&?).
Qed
.
Global
Instance
wld_proper
:
Proper
((
≡
)
==>
(
≡
))
(@
wld
Σ
A
).
Proof
.
by
intros
r1
r2
(?&?&?).
Qed
.
Global
Instance
pst_ne
n
:
Proper
(
dist
n
==>
dist
n
)
(@
pst
Σ
A
).
Proof
.
by
intros
r1
r2
(?&?&?).
Qed
.
Global
Instance
pst_ne'
n
:
Proper
(
dist
(
S
n
)
==>
(
≡
))
(@
pst
Σ
A
).
Proof
.
intros
σ
σ
'
(
_
&?&
_
)
;
apply
(
timeless
_
),
dist_le
with
(
S
n
)
;
auto
with
lia
.
Qed
.
Global
Instance
pst_proper
:
Proper
((
≡
)
==>
(
≡
))
(@
pst
Σ
A
).
Proof
.
by
intros
r1
r2
(?&?&?).
Qed
.
Global
Instance
gst_ne
n
:
Proper
(
dist
n
==>
dist
n
)
(@
gst
Σ
A
).
Proof
.
by
intros
r1
r2
(?&?&?).
Qed
.
Global
Instance
gst_proper
:
Proper
((
≡
)
==>
(
≡
))
(@
gst
Σ
A
).
Proof
.
by
intros
r1
r2
(?&?&?).
Qed
.
Instance
res_compl
:
Compl
(
res
Σ
A
)
:
=
λ
c
,
Res
(
compl
(
chain_map
wld
c
))
(
compl
(
chain_map
pst
c
))
(
compl
(
chain_map
gst
c
)).
Definition
res_cofe_mixin
:
CofeMixin
(
res
Σ
A
).
Proof
.
split
.
*
intros
w1
w2
;
unfold
equiv
,
res_equiv
,
dist
,
res_dist
.
rewrite
!
equiv_dist
;
naive_solver
.
*
intros
n
;
split
.
+
done
.
+
by
intros
??
(?&?&?)
;
split_ands'
.
+
intros
???
(?&?&?)
(?&?&?)
;
split_ands'
;
etransitivity
;
eauto
.
*
by
intros
n
??
(?&?&?)
;
split_ands'
;
apply
dist_S
.
*
done
.
*
intros
c
n
;
split_ands'
.
+
apply
(
conv_compl
(
chain_map
wld
c
)
n
).
+
apply
(
conv_compl
(
chain_map
pst
c
)
n
).
+
apply
(
conv_compl
(
chain_map
gst
c
)
n
).
Qed
.
Canonical
Structure
resC
:
cofeT
:
=
CofeT
res_cofe_mixin
.
Global
Instance
res_timeless
r
:
Timeless
(
wld
r
)
→
Timeless
(
gst
r
)
→
Timeless
r
.
Proof
.
by
intros
???
(?&?&?)
;
split_ands'
;
try
apply
(
timeless
_
).
Qed
.
Instance
res_op
:
Op
(
res
Σ
A
)
:
=
λ
r1
r2
,
Res
(
wld
r1
⋅
wld
r2
)
(
pst
r1
⋅
pst
r2
)
(
gst
r1
⋅
gst
r2
).
Global
Instance
res_empty
:
Empty
(
res
Σ
A
)
:
=
Res
∅
∅
∅
.
Instance
res_unit
:
Unit
(
res
Σ
A
)
:
=
λ
r
,
Res
(
unit
(
wld
r
))
(
unit
(
pst
r
))
(
unit
(
gst
r
)).
Instance
res_valid
:
Valid
(
res
Σ
A
)
:
=
λ
r
,
✓
(
wld
r
)
∧
✓
(
pst
r
)
∧
✓
(
gst
r
).
Instance
res_validN
:
ValidN
(
res
Σ
A
)
:
=
λ
n
r
,
✓
{
n
}
(
wld
r
)
∧
✓
{
n
}
(
pst
r
)
∧
✓
{
n
}
(
gst
r
).
Instance
res_minus
:
Minus
(
res
Σ
A
)
:
=
λ
r1
r2
,
Res
(
wld
r1
⩪
wld
r2
)
(
pst
r1
⩪
pst
r2
)
(
gst
r1
⩪
gst
r2
).
Lemma
res_included
(
r1
r2
:
res
Σ
A
)
:
r1
≼
r2
↔
wld
r1
≼
wld
r2
∧
pst
r1
≼
pst
r2
∧
gst
r1
≼
gst
r2
.
Proof
.
split
;
[|
by
intros
([
w
?]&[
σ
?]&[
m
?])
;
exists
(
Res
w
σ
m
)].
intros
[
r
Hr
]
;
split_ands
;
[
exists
(
wld
r
)|
exists
(
pst
r
)|
exists
(
gst
r
)]
;
apply
Hr
.
Qed
.
Lemma
res_includedN
(
r1
r2
:
res
Σ
A
)
n
:
r1
≼
{
n
}
r2
↔
wld
r1
≼
{
n
}
wld
r2
∧
pst
r1
≼
{
n
}
pst
r2
∧
gst
r1
≼
{
n
}
gst
r2
.
Proof
.
split
;
[|
by
intros
([
w
?]&[
σ
?]&[
m
?])
;
exists
(
Res
w
σ
m
)].
intros
[
r
Hr
]
;
split_ands
;
[
exists
(
wld
r
)|
exists
(
pst
r
)|
exists
(
gst
r
)]
;
apply
Hr
.
Qed
.
Definition
res_cmra_mixin
:
CMRAMixin
(
res
Σ
A
).
Proof
.
split
.
*
by
intros
n
x
[???]
?
(?&?&?)
;
split_ands'
;
simpl
in
*
;
cofe_subst
.
*
by
intros
n
[???]
?
(?&?&?)
;
split_ands'
;
simpl
in
*
;
cofe_subst
.
*
by
intros
n
[???]
?
(?&?&?)
(?&?&?)
;
split_ands'
;
simpl
in
*
;
cofe_subst
.
*
by
intros
n
[???]
?
(?&?&?)
[???]
?
(?&?&?)
;
split_ands'
;
simpl
in
*
;
cofe_subst
.
*
done
.
*
by
intros
n
?
(?&?&?)
;
split_ands'
;
apply
cmra_valid_S
.
*
intros
r
;
unfold
valid
,
res_valid
,
validN
,
res_validN
.
rewrite
!
cmra_valid_validN
;
naive_solver
.
*
intros
???
;
split_ands'
;
simpl
;
apply
(
associative
_
).
*
intros
??
;
split_ands'
;
simpl
;
apply
(
commutative
_
).
*
intros
?
;
split_ands'
;
simpl
;
apply
ra_unit_l
.
*
intros
?
;
split_ands'
;
simpl
;
apply
ra_unit_idempotent
.
*
intros
n
r1
r2
;
rewrite
!
res_includedN
.
by
intros
(?&?&?)
;
split_ands'
;
apply
cmra_unit_preserving
.
*
intros
n
r1
r2
(?&?&?)
;
split_ands'
;
simpl
in
*
;
eapply
cmra_valid_op_l
;
eauto
.
*
intros
n
r1
r2
;
rewrite
res_includedN
;
intros
(?&?&?).
by
split_ands'
;
apply
cmra_op_minus
.
Qed
.
Global
Instance
res_ra_empty
:
RAIdentity
(
res
Σ
A
).
Proof
.
by
repeat
split
;
simpl
;
repeat
apply
ra_empty_valid
;
rewrite
(
left_id
_
_
).
Qed
.
Definition
res_cmra_extend_mixin
:
CMRAExtendMixin
(
res
Σ
A
).
Proof
.
intros
n
r
r1
r2
(?&?&?)
(?&?&?)
;
simpl
in
*.
destruct
(
cmra_extend_op
n
(
wld
r
)
(
wld
r1
)
(
wld
r2
))
as
([
w
w'
]&?&?&?),
(
cmra_extend_op
n
(
pst
r
)
(
pst
r1
)
(
pst
r2
))
as
([
σ
σ
'
]&?&?&?),
(
cmra_extend_op
n
(
gst
r
)
(
gst
r1
)
(
gst
r2
))
as
([
m
m'
]&?&?&?)
;
auto
.
by
exists
(
Res
w
σ
m
,
Res
w'
σ
'
m'
).
Qed
.
Canonical
Structure
resRA
:
cmraT
:
=
CMRAT
res_cofe_mixin
res_cmra_mixin
res_cmra_extend_mixin
.
Lemma
Res_op
w1
w2
σ
1
σ
2
m1
m2
:
Res
w1
σ
1
m1
⋅
Res
w2
σ
2
m2
=
Res
(
w1
⋅
w2
)
(
σ
1
⋅
σ
2
)
(
m1
⋅
m2
).
Proof
.
done
.
Qed
.
Lemma
Res_unit
w
σ
m
:
unit
(
Res
w
σ
m
)
=
Res
(
unit
w
)
(
unit
σ
)
(
unit
m
).
Proof
.
done
.
Qed
.
End
res
.
Definition
res_map
{
Σ
A
B
}
(
f
:
A
-
n
>
B
)
(
r
:
res
Σ
A
)
:
res
Σ
B
:
=
Res
(
agree_map
(
later_map
f
)
<$>
(
wld
r
))
(
pst
r
)
(
icmra_map
Σ
(
laterC_map
f
)
(
gst
r
)).
Instance
res_map_ne
Σ
(
A
B
:
cofeT
)
(
f
:
A
-
n
>
B
)
:
(
∀
n
,
Proper
(
dist
n
==>
dist
n
)
f
)
→
∀
n
,
Proper
(
dist
n
==>
dist
n
)
(@
res_map
Σ
_
_
f
).
Proof
.
by
intros
Hf
n
[]
?
(?&?&?)
;
split_ands'
;
simpl
in
*
;
cofe_subst
.
Qed
.
Lemma
res_map_id
{
Σ
A
}
(
r
:
res
Σ
A
)
:
res_map
cid
r
≡
r
.
Proof
.
split_ands'
;
simpl
;
[|
done
|].
*
rewrite
-{
2
}(
map_fmap_id
(
wld
r
))
;
apply
map_fmap_setoid_ext
=>
i
y
?
/=.
rewrite
-{
2
}(
agree_map_id
y
)
;
apply
agree_map_ext
=>
y'
/=.
by
rewrite
later_map_id
.
*
rewrite
-{
2
}(
icmra_map_id
Σ
(
gst
r
))
;
apply
icmra_map_ext
=>
m
/=.
by
rewrite
later_map_id
.
Qed
.
Lemma
res_map_compose
{
Σ
A
B
C
}
(
f
:
A
-
n
>
B
)
(
g
:
B
-
n
>
C
)
(
r
:
res
Σ
A
)
:
res_map
(
g
◎
f
)
r
≡
res_map
g
(
res_map
f
r
).
Proof
.
split_ands'
;
simpl
;
[|
done
|].
*
rewrite
-
map_fmap_compose
;
apply
map_fmap_setoid_ext
=>
i
y
_
/=.
rewrite
-
agree_map_compose
;
apply
agree_map_ext
=>
y'
/=.
by
rewrite
later_map_compose
.
*
rewrite
-
icmra_map_compose
;
apply
icmra_map_ext
=>
m
/=.
by
rewrite
later_map_compose
.
Qed
.
Definition
resRA_map
{
Σ
A
B
}
(
f
:
A
-
n
>
B
)
:
resRA
Σ
A
-
n
>
resRA
Σ
B
:
=
CofeMor
(
res_map
f
:
resRA
Σ
A
→
resRA
Σ
B
).
Instance
res_map_cmra_monotone
{
Σ
}
{
A
B
:
cofeT
}
(
f
:
A
-
n
>
B
)
:
CMRAMonotone
(@
res_map
Σ
_
_
f
).
Proof
.
split
.
*
by
intros
n
r1
r2
;
rewrite
!
res_includedN
;
intros
(?&?&?)
;
split_ands'
;
simpl
;
try
apply
includedN_preserving
.
*
by
intros
n
r
(?&?&?)
;
split_ands'
;
simpl
;
try
apply
validN_preserving
.
Qed
.
Instance
resRA_map_contractive
{
Σ
A
B
}
:
Contractive
(@
resRA_map
Σ
A
B
).
Proof
.
intros
n
f
g
?
r
;
split_ands'
;
simpl
;
[|
done
|].
*
by
apply
(
mapRA_map_ne
_
(
agreeRA_map
(
laterC_map
f
))
(
agreeRA_map
(
laterC_map
g
))),
agreeRA_map_ne
,
laterC_map_contractive
.
*
by
apply
icmra_map_ne
,
laterC_map_contractive
.
Qed
.
(* Functor for the solution *)
Module
iProp
.
Definition
F
(
Σ
:
iParam
)
(
A
B
:
cofeT
)
:
cofeT
:
=
uPredC
(
resRA
Σ
A
).
Definition
map
{
Σ
:
iParam
}
{
A1
A2
B1
B2
:
cofeT
}
(
f
:
(
A2
-
n
>
A1
)
*
(
B1
-
n
>
B2
))
:
F
Σ
A1
B1
-
n
>
F
Σ
A2
B2
:
=
uPredC_map
(
resRA_map
(
f
.
1
)).
Definition
result
Σ
:
solution
(
F
Σ
).
Proof
.
apply
(
solver
.
result
_
(@
map
Σ
)).
*
by
intros
A
B
r
n
?
;
rewrite
/=
res_map_id
.
*
by
intros
A1
A2
A3
B1
B2
B3
f
g
f'
g'
P
r
n
?
;
rewrite
/=
res_map_compose
.
*
by
intros
A1
A2
B1
B2
n
f
f'
[??]
r
;
apply
upredC_map_ne
,
resRA_map_contractive
.
Qed
.
End
iProp
.
(* Solution *)
Definition
iPreProp
(
Σ
:
iParam
)
:
cofeT
:
=
iProp
.
result
Σ
.
Notation
res'
Σ
:
=
(
resRA
Σ
(
iPreProp
Σ
)).
Notation
icmra'
Σ
:
=
(
icmra
Σ
(
laterC
(
iPreProp
Σ
))).
Definition
iProp
(
Σ
:
iParam
)
:
cofeT
:
=
uPredC
(
resRA
Σ
(
iPreProp
Σ
)).
Definition
iProp_unfold
{
Σ
}
:
iProp
Σ
-
n
>
iPreProp
Σ
:
=
solution_fold
_
.
Definition
iProp_fold
{
Σ
}
:
iPreProp
Σ
-
n
>
iProp
Σ
:
=
solution_unfold
_
.
Lemma
iProp_fold_unfold
{
Σ
}
(
P
:
iProp
Σ
)
:
iProp_fold
(
iProp_unfold
P
)
≡
P
.
Proof
.
apply
solution_unfold_fold
.
Qed
.
Lemma
iProp_unfold_fold
{
Σ
}
(
P
:
iPreProp
Σ
)
:
iProp_unfold
(
iProp_fold
P
)
≡
P
.
Proof
.
apply
solution_fold_unfold
.
Qed
.
Bind
Scope
uPred_scope
with
iProp
.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment