Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
10
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Rodolphe Lepigre
Iris
Commits
8d1b743e
Commit
8d1b743e
authored
May 31, 2016
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Rename box_inv into box_slice_inv.
parent
5d66333c
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
6 additions
and
6 deletions
+6
-6
program_logic/boxes.v
program_logic/boxes.v
+6
-6
No files found.
program_logic/boxes.v
View file @
8d1b743e
...
@@ -19,22 +19,22 @@ Section box_defs.
...
@@ -19,22 +19,22 @@ Section box_defs.
Definition
box_own_prop
(
γ
:
gname
)
(
P
:
iProp
)
:
iProp
:
=
Definition
box_own_prop
(
γ
:
gname
)
(
P
:
iProp
)
:
iProp
:
=
own
γ
(
∅
:
auth
_
,
Some
(
to_agree
(
Next
(
iProp_unfold
P
)))).
own
γ
(
∅
:
auth
_
,
Some
(
to_agree
(
Next
(
iProp_unfold
P
)))).
Definition
box_inv
(
γ
:
gname
)
(
P
:
iProp
)
:
iProp
:
=
Definition
box_
slice_
inv
(
γ
:
gname
)
(
P
:
iProp
)
:
iProp
:
=
(
∃
b
,
box_own_auth
γ
(
●
Excl'
b
)
★
box_own_prop
γ
P
★
if
b
then
P
else
True
)%
I
.
(
∃
b
,
box_own_auth
γ
(
●
Excl'
b
)
★
box_own_prop
γ
P
★
if
b
then
P
else
True
)%
I
.
Definition
box_slice
(
γ
:
gname
)
(
P
:
iProp
)
:
iProp
:
=
Definition
box_slice
(
γ
:
gname
)
(
P
:
iProp
)
:
iProp
:
=
inv
N
(
box_inv
γ
P
).
inv
N
(
box_
slice_
inv
γ
P
).
Definition
box
(
f
:
gmap
gname
bool
)
(
P
:
iProp
)
:
iProp
:
=
Definition
box
(
f
:
gmap
gname
bool
)
(
P
:
iProp
)
:
iProp
:
=
(
∃
Φ
:
gname
→
iProp
,
(
∃
Φ
:
gname
→
iProp
,
▷
(
P
≡
[
★
map
]
γ
↦
b
∈
f
,
Φ
γ
)
★
▷
(
P
≡
[
★
map
]
γ
↦
b
∈
f
,
Φ
γ
)
★
[
★
map
]
γ
↦
b
∈
f
,
box_own_auth
γ
(
◯
Excl'
b
)
★
box_own_prop
γ
(
Φ
γ
)
★
[
★
map
]
γ
↦
b
∈
f
,
box_own_auth
γ
(
◯
Excl'
b
)
★
box_own_prop
γ
(
Φ
γ
)
★
inv
N
(
box_inv
γ
(
Φ
γ
)))%
I
.
inv
N
(
box_
slice_
inv
γ
(
Φ
γ
)))%
I
.
End
box_defs
.
End
box_defs
.
Instance
:
Params
(@
box_own_auth
)
4
.
Instance
:
Params
(@
box_own_auth
)
4
.
Instance
:
Params
(@
box_own_prop
)
4
.
Instance
:
Params
(@
box_own_prop
)
4
.
Instance
:
Params
(@
box_inv
)
4
.
Instance
:
Params
(@
box_
slice_
inv
)
4
.
Instance
:
Params
(@
box_slice
)
5
.
Instance
:
Params
(@
box_slice
)
5
.
Instance
:
Params
(@
box
)
5
.
Instance
:
Params
(@
box
)
5
.
...
@@ -46,7 +46,7 @@ Implicit Types P Q : iProp.
...
@@ -46,7 +46,7 @@ Implicit Types P Q : iProp.
(* FIXME: solve_proper picks the eq ==> instance for Next. *)
(* FIXME: solve_proper picks the eq ==> instance for Next. *)
Global
Instance
box_own_prop_ne
n
γ
:
Proper
(
dist
n
==>
dist
n
)
(
box_own_prop
γ
).
Global
Instance
box_own_prop_ne
n
γ
:
Proper
(
dist
n
==>
dist
n
)
(
box_own_prop
γ
).
Proof
.
solve_proper
.
Qed
.
Proof
.
solve_proper
.
Qed
.
Global
Instance
box_inv_ne
n
γ
:
Proper
(
dist
n
==>
dist
n
)
(
box_inv
γ
).
Global
Instance
box_inv_ne
n
γ
:
Proper
(
dist
n
==>
dist
n
)
(
box_
slice_
inv
γ
).
Proof
.
solve_proper
.
Qed
.
Proof
.
solve_proper
.
Qed
.
Global
Instance
box_slice_ne
n
γ
:
Proper
(
dist
n
==>
dist
n
)
(
box_slice
N
γ
).
Global
Instance
box_slice_ne
n
γ
:
Proper
(
dist
n
==>
dist
n
)
(
box_slice
N
γ
).
Proof
.
solve_proper
.
Qed
.
Proof
.
solve_proper
.
Qed
.
...
@@ -103,7 +103,7 @@ Proof.
...
@@ -103,7 +103,7 @@ Proof.
as
{
γ
}
"[Hdom Hγ]"
;
first
done
.
as
{
γ
}
"[Hdom Hγ]"
;
first
done
.
rewrite
pair_split
.
iDestruct
"Hγ"
as
"[[Hγ Hγ'] #HγQ]"
.
rewrite
pair_split
.
iDestruct
"Hγ"
as
"[[Hγ Hγ'] #HγQ]"
.
iDestruct
"Hdom"
as
%
?%
not_elem_of_dom
.
iDestruct
"Hdom"
as
%
?%
not_elem_of_dom
.
iPvs
(
inv_alloc
N
_
(
box_inv
γ
Q
)
with
"[Hγ]"
)
as
"#Hinv"
;
first
done
.
iPvs
(
inv_alloc
N
_
(
box_
slice_
inv
γ
Q
)
with
"[Hγ]"
)
as
"#Hinv"
;
first
done
.
{
iNext
.
iExists
false
.
by
repeat
iSplit
.
}
{
iNext
.
iExists
false
.
by
repeat
iSplit
.
}
iPvsIntro
;
iExists
γ
;
repeat
iSplit
;
auto
.
iPvsIntro
;
iExists
γ
;
repeat
iSplit
;
auto
.
iNext
.
iExists
(<[
γ
:
=
Q
]>
Φ
)
;
iSplit
.
iNext
.
iExists
(<[
γ
:
=
Q
]>
Φ
)
;
iSplit
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment