Skip to content
Snippets Groups Projects
Commit 3077c6c6 authored by Ralf Jung's avatar Ralf Jung
Browse files

more spacing fixes for better grouping

parent 59a8f5bf
No related branches found
No related tags found
No related merge requests found
...@@ -9,9 +9,8 @@ Class authG Σ (A : ucmraT) := AuthG { ...@@ -9,9 +9,8 @@ Class authG Σ (A : ucmraT) := AuthG {
auth_inG :> inG Σ (authR A); auth_inG :> inG Σ (authR A);
auth_discrete :> CMRADiscrete A; auth_discrete :> CMRADiscrete A;
}. }.
(* The global functor we need and register that they match. *)
Definition authΣ (A : ucmraT) : gFunctors := #[ GFunctor (constRF (authR A)) ]. Definition authΣ (A : ucmraT) : gFunctors := #[ GFunctor (constRF (authR A)) ].
Instance subG_authΣ Σ A : subG (authΣ A) Σ CMRADiscrete A authG Σ A. Instance subG_authΣ Σ A : subG (authΣ A) Σ CMRADiscrete A authG Σ A.
Proof. intros ?%subG_inG ?. by split. Qed. Proof. intros ?%subG_inG ?. by split. Qed.
......
...@@ -5,9 +5,9 @@ Import uPred. ...@@ -5,9 +5,9 @@ Import uPred.
Class savedPropG (Σ : gFunctors) (F : cFunctor) := Class savedPropG (Σ : gFunctors) (F : cFunctor) :=
saved_prop_inG :> inG Σ (agreeR (laterC (F (iPreProp Σ)))). saved_prop_inG :> inG Σ (agreeR (laterC (F (iPreProp Σ)))).
Definition savedPropΣ (F : cFunctor) : gFunctors := Definition savedPropΣ (F : cFunctor) : gFunctors :=
#[ GFunctor (agreeRF ( F)) ]. #[ GFunctor (agreeRF ( F)) ].
Instance subG_savedPropΣ {Σ F} : subG (savedPropΣ F) Σ savedPropG Σ F. Instance subG_savedPropΣ {Σ F} : subG (savedPropΣ F) Σ savedPropG Σ F.
Proof. apply subG_inG. Qed. Proof. apply subG_inG. Qed.
......
...@@ -8,9 +8,8 @@ Class stsG Σ (sts : stsT) := StsG { ...@@ -8,9 +8,8 @@ Class stsG Σ (sts : stsT) := StsG {
sts_inG :> inG Σ (stsR sts); sts_inG :> inG Σ (stsR sts);
sts_inhabited :> Inhabited (sts.state sts); sts_inhabited :> Inhabited (sts.state sts);
}. }.
(* The global functor we need and register that they match. *)
Definition stsΣ (sts : stsT) : gFunctors := #[ GFunctor (constRF (stsR sts)) ]. Definition stsΣ (sts : stsT) : gFunctors := #[ GFunctor (constRF (stsR sts)) ].
Instance subG_stsΣ Σ sts : Instance subG_stsΣ Σ sts :
subG (stsΣ sts) Σ Inhabited (sts.state sts) stsG Σ sts. subG (stsΣ sts) Σ Inhabited (sts.state sts) stsG Σ sts.
Proof. intros ?%subG_inG ?. by split. Qed. Proof. intros ?%subG_inG ?. by split. Qed.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment