Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Rodolphe Lepigre
Iris
Commits
0100a7b1
Commit
0100a7b1
authored
Sep 17, 2017
by
Robbert Krebbers
Browse files
Get rid of TimelessL and PersistentL and use TCForall instead.
parent
391e52d7
Changes
2
Hide whitespace changes
Inline
Side-by-side
theories/algebra/list.v
View file @
0100a7b1
...
...
@@ -468,63 +468,3 @@ Instance listURF_contractive F :
Proof
.
by
intros
?
A1
A2
B1
B2
n
f
g
Hfg
;
apply
listC_map_ne
,
urFunctor_contractive
.
Qed
.
(** * Persistence and timelessness of lists of uPreds *)
Class
PersistentL
{
M
}
(
Ps
:
list
(
uPred
M
))
:
=
persistentL
:
Forall
PersistentP
Ps
.
Arguments
persistentL
{
_
}
_
{
_
}.
Hint
Mode
PersistentL
+
!
:
typeclass_instances
.
Class
TimelessL
{
M
}
(
Ps
:
list
(
uPred
M
))
:
=
timelessL
:
Forall
TimelessP
Ps
.
Arguments
timelessL
{
_
}
_
{
_
}.
Hint
Mode
TimelessP
+
!
:
typeclass_instances
.
Section
persistent_timeless
.
Context
{
M
:
ucmraT
}.
Implicit
Types
Ps
Qs
:
list
(
uPred
M
).
Implicit
Types
A
:
Type
.
Global
Instance
nil_persistentL
:
PersistentL
(@
nil
(
uPred
M
)).
Proof
.
constructor
.
Qed
.
Global
Instance
cons_persistentL
P
Ps
:
PersistentP
P
→
PersistentL
Ps
→
PersistentL
(
P
::
Ps
).
Proof
.
by
constructor
.
Qed
.
Global
Instance
app_persistentL
Ps
Ps'
:
PersistentL
Ps
→
PersistentL
Ps'
→
PersistentL
(
Ps
++
Ps'
).
Proof
.
apply
Forall_app_2
.
Qed
.
Global
Instance
fmap_persistentL
{
A
}
(
f
:
A
→
uPred
M
)
xs
:
(
∀
x
,
PersistentP
(
f
x
))
→
PersistentL
(
f
<$>
xs
).
Proof
.
intros
.
apply
Forall_fmap
,
Forall_forall
;
auto
.
Qed
.
Global
Instance
zip_with_persistentL
{
A
B
}
(
f
:
A
→
B
→
uPred
M
)
xs
ys
:
(
∀
x
y
,
PersistentP
(
f
x
y
))
→
PersistentL
(
zip_with
f
xs
ys
).
Proof
.
unfold
PersistentL
=>
?
;
revert
ys
;
induction
xs
=>
-[|??]
;
constructor
;
auto
.
Qed
.
Global
Instance
imap_persistentL
{
A
}
(
f
:
nat
→
A
→
uPred
M
)
xs
:
(
∀
i
x
,
PersistentP
(
f
i
x
))
→
PersistentL
(
imap
f
xs
).
Proof
.
revert
f
.
induction
xs
;
simpl
;
constructor
;
naive_solver
.
Qed
.
(** ** Timelessness *)
Global
Instance
nil_timelessL
:
TimelessL
(@
nil
(
uPred
M
)).
Proof
.
constructor
.
Qed
.
Global
Instance
cons_timelessL
P
Ps
:
TimelessP
P
→
TimelessL
Ps
→
TimelessL
(
P
::
Ps
).
Proof
.
by
constructor
.
Qed
.
Global
Instance
app_timelessL
Ps
Ps'
:
TimelessL
Ps
→
TimelessL
Ps'
→
TimelessL
(
Ps
++
Ps'
).
Proof
.
apply
Forall_app_2
.
Qed
.
Global
Instance
fmap_timelessL
{
A
}
(
f
:
A
→
uPred
M
)
xs
:
(
∀
x
,
TimelessP
(
f
x
))
→
TimelessL
(
f
<$>
xs
).
Proof
.
intros
.
apply
Forall_fmap
,
Forall_forall
;
auto
.
Qed
.
Global
Instance
zip_with_timelessL
{
A
B
}
(
f
:
A
→
B
→
uPred
M
)
xs
ys
:
(
∀
x
y
,
TimelessP
(
f
x
y
))
→
TimelessL
(
zip_with
f
xs
ys
).
Proof
.
unfold
TimelessL
=>
?
;
revert
ys
;
induction
xs
=>
-[|??]
;
constructor
;
auto
.
Qed
.
Global
Instance
imap_timelessL
{
A
}
(
f
:
nat
→
A
→
uPred
M
)
xs
:
(
∀
i
x
,
TimelessP
(
f
i
x
))
→
TimelessL
(
imap
f
xs
).
Proof
.
revert
f
.
induction
xs
;
simpl
;
constructor
;
naive_solver
.
Qed
.
End
persistent_timeless
.
theories/base_logic/big_op.v
View file @
0100a7b1
...
...
@@ -155,7 +155,8 @@ Section list.
Global
Instance
big_sepL_persistent
Φ
l
:
(
∀
k
x
,
PersistentP
(
Φ
k
x
))
→
PersistentP
([
∗
list
]
k
↦
x
∈
l
,
Φ
k
x
).
Proof
.
revert
Φ
.
induction
l
as
[|
x
l
IH
]=>
Φ
?
/=
;
apply
_
.
Qed
.
Global
Instance
big_sepL_persistent_id
Ps
:
PersistentL
Ps
→
PersistentP
([
∗
]
Ps
).
Global
Instance
big_sepL_persistent_id
Ps
:
TCForall
PersistentP
Ps
→
PersistentP
([
∗
]
Ps
).
Proof
.
induction
1
;
simpl
;
apply
_
.
Qed
.
Global
Instance
big_sepL_nil_timeless
Φ
:
...
...
@@ -164,7 +165,8 @@ Section list.
Global
Instance
big_sepL_timeless
Φ
l
:
(
∀
k
x
,
TimelessP
(
Φ
k
x
))
→
TimelessP
([
∗
list
]
k
↦
x
∈
l
,
Φ
k
x
).
Proof
.
revert
Φ
.
induction
l
as
[|
x
l
IH
]=>
Φ
?
/=
;
apply
_
.
Qed
.
Global
Instance
big_sepL_timeless_id
Ps
:
TimelessL
Ps
→
TimelessP
([
∗
]
Ps
).
Global
Instance
big_sepL_timeless_id
Ps
:
TCForall
TimelessP
Ps
→
TimelessP
([
∗
]
Ps
).
Proof
.
induction
1
;
simpl
;
apply
_
.
Qed
.
End
list
.
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment