Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Rice Wine
Iris
Commits
c218e1ab
Commit
c218e1ab
authored
8 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Add nclose N ⊆ E → nclose (N .@ x) ⊆ E to ndisj hints.
parent
fc0b90e4
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
base_logic/lib/namespaces.v
+29
-23
29 additions, 23 deletions
base_logic/lib/namespaces.v
with
29 additions
and
23 deletions
base_logic/lib/namespaces.v
+
29
−
23
View file @
c218e1ab
...
...
@@ -22,33 +22,38 @@ Definition nclose_eq : @nclose = @nclose_def := proj2_sig nclose_aux.
Infix
".@"
:=
ndot
(
at
level
19
,
left
associativity
)
:
C_scope
.
Notation
"(.@)"
:=
ndot
(
only
parsing
)
:
C_scope
.
Instance
ndot_inj
`{
Countable
A
}
:
Inj2
(
=
)
(
=
)
(
=
)
(
@
ndot
A
_
_)
.
Proof
.
intros
N1
x1
N2
x2
;
rewrite
!
ndot_eq
=>
?;
by
simplify_eq
.
Qed
.
Lemma
nclose_nroot
:
nclose
nroot
=
⊤
.
Proof
.
rewrite
nclose_eq
.
by
apply
(
sig_eq_pi
_)
.
Qed
.
Lemma
encode_nclose
N
:
encode
N
∈
nclose
N
.
Proof
.
rewrite
nclose_eq
.
by
apply
elem_coPset_suffixes
;
exists
xH
;
rewrite
(
left_id_L
_
_)
.
Qed
.
Lemma
nclose_subseteq
`{
Countable
A
}
N
x
:
nclose
(
N
.
@
x
)
⊆
nclose
N
.
Proof
.
intros
p
;
rewrite
nclose_eq
/
nclose
!
ndot_eq
!
elem_coPset_suffixes
.
intros
[
q
->
]
.
destruct
(
list_encode_suffix
N
(
ndot_def
N
x
))
as
[
q'
?]
.
{
by
exists
[
encode
x
]
.
}
by
exists
(
q
++
q'
)
%
positive
;
rewrite
<-
(
assoc_L
_);
f_equal
.
Qed
.
Lemma
ndot_nclose
`{
Countable
A
}
N
x
:
encode
(
N
.
@
x
)
∈
nclose
N
.
Proof
.
apply
nclose_subseteq
with
x
,
encode_nclose
.
Qed
.
Lemma
nclose_infinite
N
:
¬
set_finite
(
nclose
N
)
.
Proof
.
rewrite
nclose_eq
.
apply
coPset_suffixes_infinite
.
Qed
.
Instance
ndisjoint
:
Disjoint
namespace
:=
λ
N1
N2
,
nclose
N1
⊥
nclose
N2
.
Section
n
disjoint
.
Section
n
amespace
.
Context
`{
Countable
A
}
.
Implicit
Types
x
y
:
A
.
Global
Instance
ndot_inj
:
Inj2
(
=
)
(
=
)
(
=
)
(
@
ndot
A
_
_)
.
Proof
.
intros
N1
x1
N2
x2
;
rewrite
!
ndot_eq
=>
?;
by
simplify_eq
.
Qed
.
Lemma
nclose_nroot
:
nclose
nroot
=
⊤
.
Proof
.
rewrite
nclose_eq
.
by
apply
(
sig_eq_pi
_)
.
Qed
.
Lemma
encode_nclose
N
:
encode
N
∈
nclose
N
.
Proof
.
rewrite
nclose_eq
.
by
apply
elem_coPset_suffixes
;
exists
xH
;
rewrite
(
left_id_L
_
_)
.
Qed
.
Lemma
nclose_subseteq
N
x
:
nclose
(
N
.
@
x
)
⊆
nclose
N
.
Proof
.
intros
p
;
rewrite
nclose_eq
/
nclose
!
ndot_eq
!
elem_coPset_suffixes
.
intros
[
q
->
]
.
destruct
(
list_encode_suffix
N
(
ndot_def
N
x
))
as
[
q'
?]
.
{
by
exists
[
encode
x
]
.
}
by
exists
(
q
++
q'
)
%
positive
;
rewrite
<-
(
assoc_L
_);
f_equal
.
Qed
.
Lemma
nclose_subseteq'
E
N
x
:
nclose
N
⊆
E
→
nclose
(
N
.
@
x
)
⊆
E
.
Proof
.
intros
.
etrans
;
eauto
using
nclose_subseteq
.
Qed
.
Lemma
ndot_nclose
N
x
:
encode
(
N
.
@
x
)
∈
nclose
N
.
Proof
.
apply
nclose_subseteq
with
x
,
encode_nclose
.
Qed
.
Lemma
nclose_infinite
N
:
¬
set_finite
(
nclose
N
)
.
Proof
.
rewrite
nclose_eq
.
apply
coPset_suffixes_infinite
.
Qed
.
Lemma
ndot_ne_disjoint
N
x
y
:
x
≠
y
→
N
.
@
x
⊥
N
.
@
y
.
Proof
.
intros
Hxy
a
.
rewrite
!
nclose_eq
!
elem_coPset_suffixes
!
ndot_eq
.
...
...
@@ -65,7 +70,7 @@ Section ndisjoint.
Lemma
ndisj_subseteq_difference
N
E
F
:
E
⊥
nclose
N
→
E
⊆
F
→
E
⊆
F
∖
nclose
N
.
Proof
.
set_solver
.
Qed
.
End
n
disjoint
.
End
n
amespace
.
(* The hope is that registering these will suffice to solve most goals
of the form [N1 ⊥ N2] and those of the form [N1 ⊆ E ∖ N2 ∖ .. ∖ Nn]. *)
...
...
@@ -73,5 +78,6 @@ Hint Resolve ndisj_subseteq_difference : ndisj.
Hint
Extern
0
(_
⊥
_)
=>
apply
ndot_ne_disjoint
;
congruence
:
ndisj
.
Hint
Resolve
ndot_preserve_disjoint_l
:
ndisj
.
Hint
Resolve
ndot_preserve_disjoint_r
:
ndisj
.
Hint
Extern
1
(_
⊆
_)
=>
apply
nclose_subseteq'
:
ndisj
.
Ltac
solve_ndisj
:=
solve
[
eauto
with
ndisj
]
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment