Commit 9459fc48 authored by Ralf Jung's avatar Ralf Jung
Browse files

join-exist: prove worker

parent c731c726
From iris.program_logic Require Import saved_one_shot hoare.
From iris.program_logic Require Import saved_one_shot hoare tactics.
From iris.barrier Require Import proof specification.
From iris.heap_lang Require Import notation par.
Import uPred.
Definition client eM eW1 eW2 : expr [] :=
(let: "b" := newbarrier #() in (eM ;; ^signal '"b") ||
......@@ -20,9 +21,16 @@ Definition barrier_res γ (P : X → iProp) : iProp :=
Lemma worker_spec e γ l (P Q : X iProp) (R : iProp) Φ :
R ( x, {{ P x }} e {{ λ _, Q x }})
R (recv heapN N l (barrier_res γ P) ( v : val, barrier_res γ Q - Φ v ))
R WP ^wait (%l) ;; e {{ Φ }}.
R WP wait (%l) ;; e {{ Φ }}.
intros He HΦ. rewrite -[R](idemp ()%I) {1}He HΦ always_and_sep_l {He HΦ}.
ewp (eapply wait_spec). ecancel [recv _ _ l _]. apply wand_intro_r. wp_seq.
rewrite /barrier_res sep_exist_l. apply exist_elim=>x.
rewrite (forall_elim x) /ht always_elim impl_wand !assoc.
to_front [P x; _ - _]%I. rewrite wand_elim_r !wp_frame_r.
apply wp_mono=>v. rewrite (forall_elim v). rewrite -(exist_intro x).
to_front [one_shot_own _ _; Q _]. by rewrite wand_elim_r.
Context (P' : iProp) (P P1 P2 Q Q1 Q2 : X iProp).
Context {P_split : ( x:X, P x) (( x:X, P1 x) ( x:X, P2 x))}.
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment