Skip to content
Snippets Groups Projects
Commit 513b8d85 authored by Jacques-Henri Jourdan's avatar Jacques-Henri Jourdan
Browse files

Splitting and combining boxes. Also refactored boxes by currying things.

parent ff96075a
No related branches found
No related tags found
No related merge requests found
...@@ -49,8 +49,12 @@ Global Instance box_inv_ne n γ : Proper (dist n ==> dist n) (slice_inv γ). ...@@ -49,8 +49,12 @@ Global Instance box_inv_ne n γ : Proper (dist n ==> dist n) (slice_inv γ).
Proof. solve_proper. Qed. Proof. solve_proper. Qed.
Global Instance slice_ne n γ : Proper (dist n ==> dist n) (slice N γ). Global Instance slice_ne n γ : Proper (dist n ==> dist n) (slice N γ).
Proof. solve_proper. Qed. Proof. solve_proper. Qed.
Global Instance box_ne n f : Proper (dist n ==> dist n) (box N f). Global Instance box_contractive f : Contractive (box N f).
Proof. solve_proper. Qed. Proof.
intros n P1 P2 HP1P2. apply exist_ne. intros Φ. f_equiv; last done.
apply contractive. intros n' ?. by rewrite HP1P2.
Qed.
Global Instance slice_persistent γ P : PersistentP (slice N γ P). Global Instance slice_persistent γ P : PersistentP (slice N γ P).
Proof. apply _. Qed. Proof. apply _. Qed.
...@@ -85,7 +89,7 @@ Proof. ...@@ -85,7 +89,7 @@ Proof.
- by rewrite big_sepM_empty. - by rewrite big_sepM_empty.
Qed. Qed.
Lemma box_insert_empty E f P Q : Lemma box_insert_empty Q E f P :
box N f P ={E}=∗ γ, f !! γ = None box N f P ={E}=∗ γ, f !! γ = None
slice N γ Q box N (<[γ:=false]> f) (Q P). slice N γ Q box N (<[γ:=false]> f) (Q P).
Proof. Proof.
...@@ -107,10 +111,10 @@ Qed. ...@@ -107,10 +111,10 @@ Qed.
Lemma box_delete_empty E f P Q γ : Lemma box_delete_empty E f P Q γ :
N E N E
f !! γ = Some false f !! γ = Some false
slice N γ Q box N f P ={E}=∗ P', slice N γ Q - box N f P ={E}=∗ P',
(P (Q P')) box N (delete γ f) P'. (P (Q P')) box N (delete γ f) P'.
Proof. Proof.
iIntros (??) "[#Hinv H]"; iDestruct "H" as (Φ) "[#HeqP Hf]". iIntros (??) "#Hinv H"; iDestruct "H" as (Φ) "[#HeqP Hf]".
iExists ([ map] γ'↦_ delete γ f, Φ γ')%I. iExists ([ map] γ'↦_ delete γ f, Φ γ')%I.
iInv N as (b) "(Hγ & #HγQ &_)" "Hclose". iInv N as (b) "(Hγ & #HγQ &_)" "Hclose".
iApply fupd_trans_frame; iFrame "Hclose"; iModIntro; iNext. iApply fupd_trans_frame; iFrame "Hclose"; iModIntro; iNext.
...@@ -127,9 +131,9 @@ Qed. ...@@ -127,9 +131,9 @@ Qed.
Lemma box_fill E f γ P Q : Lemma box_fill E f γ P Q :
N E N E
f !! γ = Some false f !! γ = Some false
slice N γ Q Q box N f P ={E}=∗ box N (<[γ:=true]> f) P. slice N γ Q - Q - box N f P ={E}=∗ box N (<[γ:=true]> f) P.
Proof. Proof.
iIntros (??) "(#Hinv & HQ & H)"; iDestruct "H" as (Φ) "[#HeqP Hf]". iIntros (??) "#Hinv HQ H"; iDestruct "H" as (Φ) "[#HeqP Hf]".
iInv N as (b') "(>Hγ & #HγQ & _)" "Hclose". iInv N as (b') "(>Hγ & #HγQ & _)" "Hclose".
iDestruct (big_sepM_later _ f with "Hf") as "Hf". iDestruct (big_sepM_later _ f with "Hf") as "Hf".
iDestruct (big_sepM_delete _ f _ false with "Hf") iDestruct (big_sepM_delete _ f _ false with "Hf")
...@@ -146,9 +150,9 @@ Qed. ...@@ -146,9 +150,9 @@ Qed.
Lemma box_empty E f P Q γ : Lemma box_empty E f P Q γ :
N E N E
f !! γ = Some true f !! γ = Some true
slice N γ Q box N f P ={E}=∗ Q box N (<[γ:=false]> f) P. slice N γ Q - box N f P ={E}=∗ Q box N (<[γ:=false]> f) P.
Proof. Proof.
iIntros (??) "[#Hinv H]"; iDestruct "H" as (Φ) "[#HeqP Hf]". iIntros (??) "#Hinv H"; iDestruct "H" as (Φ) "[#HeqP Hf]".
iInv N as (b) "(>Hγ & #HγQ & HQ)" "Hclose". iInv N as (b) "(>Hγ & #HγQ & HQ)" "Hclose".
iDestruct (big_sepM_later _ f with "Hf") as "Hf". iDestruct (big_sepM_later _ f with "Hf") as "Hf".
iDestruct (big_sepM_delete _ f with "Hf") iDestruct (big_sepM_delete _ f with "Hf")
...@@ -163,36 +167,35 @@ Proof. ...@@ -163,36 +167,35 @@ Proof.
iFrame; eauto. iFrame; eauto.
Qed. Qed.
Lemma box_insert_full E f P Q : Lemma box_insert_full Q E f P :
N E N E
Q box N f P ={E}=∗ γ, f !! γ = None Q - box N f P ={E}=∗ γ, f !! γ = None
slice N γ Q box N (<[γ:=true]> f) (Q P). slice N γ Q box N (<[γ:=true]> f) (Q P).
Proof. Proof.
iIntros (?) "[HQ Hbox]". iIntros (?) "HQ Hbox".
iMod (box_insert_empty with "Hbox") as (γ) "(% & #Hslice & Hbox)". iMod (box_insert_empty with "Hbox") as (γ) "(% & #Hslice & Hbox)".
iExists γ. iFrame "%#". iExists γ. iFrame "%#". iMod (box_fill with "Hslice HQ Hbox"). done.
iMod (box_fill with "[$Hslice $HQ $Hbox]"). done.
by apply lookup_insert. by rewrite insert_insert. by apply lookup_insert. by rewrite insert_insert.
Qed. Qed.
Lemma box_delete_full E f P Q γ : Lemma box_delete_full E f P Q γ :
N E N E
f !! γ = Some true f !! γ = Some true
slice N γ Q box N f P ={E}=∗ slice N γ Q - box N f P ={E}=∗
Q P', (P (Q P')) box N (delete γ f) P'. P', Q (P (Q P')) box N (delete γ f) P'.
Proof. Proof.
iIntros (??) "[#Hslice Hbox]". iIntros (??) "#Hslice Hbox".
iMod (box_empty with "[$Hslice $Hbox]") as "[$ Hbox]"; try done. iMod (box_empty with "Hslice Hbox") as "[$ Hbox]"; try done.
iMod (box_delete_empty with "[$Hslice $Hbox]") as (P') "[Heq Hbox]". iMod (box_delete_empty with "Hslice Hbox") as (P') "[Heq Hbox]".
done. by apply lookup_insert. done. by apply lookup_insert.
iExists P'. iFrame. rewrite -insert_delete delete_insert ?lookup_delete //. iExists P'. iFrame. rewrite -insert_delete delete_insert ?lookup_delete //.
Qed. Qed.
Lemma box_fill_all E f P : Lemma box_fill_all E f P :
N E N E
box N f P P ={E}=∗ box N (const true <$> f) P. box N f P - P ={E}=∗ box N (const true <$> f) P.
Proof. Proof.
iIntros (?) "[H HP]"; iDestruct "H" as (Φ) "[#HeqP Hf]". iIntros (?) "H HP"; iDestruct "H" as (Φ) "[#HeqP Hf]".
iExists Φ; iSplitR; first by rewrite big_sepM_fmap. iExists Φ; iSplitR; first by rewrite big_sepM_fmap.
rewrite internal_eq_iff later_iff big_sepM_later. rewrite internal_eq_iff later_iff big_sepM_later.
iDestruct ("HeqP" with "HP") as "HP". iDestruct ("HeqP" with "HP") as "HP".
...@@ -226,6 +229,54 @@ Proof. ...@@ -226,6 +229,54 @@ Proof.
- rewrite internal_eq_iff later_iff big_sepM_later. by iApply "HeqP". - rewrite internal_eq_iff later_iff big_sepM_later. by iApply "HeqP".
- iExists Φ; iSplit; by rewrite big_sepM_fmap. - iExists Φ; iSplit; by rewrite big_sepM_fmap.
Qed. Qed.
Lemma box_split E f P Q1 Q2 γ b :
N E f !! γ = Some b
slice N γ (Q1 Q2) -∗ box N f P ={E}=∗ γ1 γ2,
delete γ f !! γ1 = None delete γ f !! γ2 = None
slice N γ1 Q1 slice N γ2 Q2 box N (<[γ2 := b]>(<[γ1 := b]>(delete γ f))) P.
Proof.
iIntros (??) "#Hslice Hbox". destruct b.
- iMod (box_delete_full with "Hslice Hbox") as (P') "([HQ1 HQ2] & Heq & Hbox)"; try done.
iMod (box_insert_full Q1 with "HQ1 Hbox") as (γ1) "(% & #Hslice1 & Hbox)". done.
iMod (box_insert_full Q2 with "HQ2 Hbox") as (γ2) "(% & #Hslice2 & Hbox)". done.
iExists γ1, γ2. iFrame "%#". iModIntro. iSplit.
{ iPureIntro. by eapply lookup_insert_None. }
iNext. eapply internal_eq_rewrite_contractive; [by apply _| |by eauto].
iNext. iRewrite "Heq". iPureIntro. rewrite assoc. f_equiv. by rewrite comm. done.
- iMod (box_delete_empty with "Hslice Hbox") as (P') "[Heq Hbox]"; try done.
iMod (box_insert_empty Q1 with "Hbox") as (γ1) "(% & #Hslice1 & Hbox)".
iMod (box_insert_empty Q2 with "Hbox") as (γ2) "(% & #Hslice2 & Hbox)".
iExists γ1, γ2. iFrame "%#". iModIntro. iSplit.
{ iPureIntro. by eapply lookup_insert_None. }
iNext. eapply internal_eq_rewrite_contractive; [by apply _| |by eauto].
iNext. iRewrite "Heq". iPureIntro. rewrite assoc. f_equiv. by rewrite comm. done.
Qed.
Lemma box_combine E f P Q1 Q2 γ1 γ2 b :
N E γ1 γ2 f !! γ1 = Some b f !! γ2 = Some b
slice N γ1 Q1 -∗ slice N γ2 Q2 -∗ box N f P ={E}=∗ γ,
delete γ2 (delete γ1 f) !! γ = None slice N γ (Q1 Q2)
box N (<[γ := b]>(delete γ2 (delete γ1 f))) P.
Proof.
iIntros (????) "#Hslice1 #Hslice2 Hbox". destruct b.
- iMod (box_delete_full with "Hslice1 Hbox") as (P1) "(HQ1 & Heq1 & Hbox)"; try done.
iMod (box_delete_full with "Hslice2 Hbox") as (P2) "(HQ2 & Heq2 & Hbox)".
done. by simplify_map_eq.
iMod (box_insert_full (Q1 Q2)%I with "[$HQ1 $HQ2] Hbox")
as (γ) "(% & #Hslice & Hbox)". done.
iExists γ. iFrame "%#". iModIntro. iNext.
eapply internal_eq_rewrite_contractive; [by apply _| |by eauto].
iNext. iRewrite "Heq1". iRewrite "Heq2". by rewrite assoc.
- iMod (box_delete_empty with "Hslice1 Hbox") as (P1) "(Heq1 & Hbox)"; try done.
iMod (box_delete_empty with "Hslice2 Hbox") as (P2) "(Heq2 & Hbox)".
done. by simplify_map_eq.
iMod (box_insert_empty (Q1 Q2)%I with "Hbox") as (γ) "(% & #Hslice & Hbox)".
iExists γ. iFrame "%#". iModIntro. iNext.
eapply internal_eq_rewrite_contractive; [by apply _| |by eauto].
iNext. iRewrite "Heq1". iRewrite "Heq2". by rewrite assoc.
Qed.
End box. End box.
Typeclasses Opaque slice box. Typeclasses Opaque slice box.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment