Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Rice Wine
Iris
Commits
513b8d85
Commit
513b8d85
authored
8 years ago
by
Jacques-Henri Jourdan
Browse files
Options
Downloads
Patches
Plain Diff
Splitting and combining boxes. Also refactored boxes by currying things.
parent
ff96075a
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
base_logic/lib/boxes.v
+72
-21
72 additions, 21 deletions
base_logic/lib/boxes.v
with
72 additions
and
21 deletions
base_logic/lib/boxes.v
+
72
−
21
View file @
513b8d85
...
@@ -49,8 +49,12 @@ Global Instance box_inv_ne n γ : Proper (dist n ==> dist n) (slice_inv γ).
...
@@ -49,8 +49,12 @@ Global Instance box_inv_ne n γ : Proper (dist n ==> dist n) (slice_inv γ).
Proof
.
solve_proper
.
Qed
.
Proof
.
solve_proper
.
Qed
.
Global
Instance
slice_ne
n
γ
:
Proper
(
dist
n
==>
dist
n
)
(
slice
N
γ
)
.
Global
Instance
slice_ne
n
γ
:
Proper
(
dist
n
==>
dist
n
)
(
slice
N
γ
)
.
Proof
.
solve_proper
.
Qed
.
Proof
.
solve_proper
.
Qed
.
Global
Instance
box_ne
n
f
:
Proper
(
dist
n
==>
dist
n
)
(
box
N
f
)
.
Global
Instance
box_contractive
f
:
Contractive
(
box
N
f
)
.
Proof
.
solve_proper
.
Qed
.
Proof
.
intros
n
P1
P2
HP1P2
.
apply
exist_ne
.
intros
Φ
.
f_equiv
;
last
done
.
apply
contractive
.
intros
n'
?
.
by
rewrite
HP1P2
.
Qed
.
Global
Instance
slice_persistent
γ
P
:
PersistentP
(
slice
N
γ
P
)
.
Global
Instance
slice_persistent
γ
P
:
PersistentP
(
slice
N
γ
P
)
.
Proof
.
apply
_
.
Qed
.
Proof
.
apply
_
.
Qed
.
...
@@ -85,7 +89,7 @@ Proof.
...
@@ -85,7 +89,7 @@ Proof.
-
by
rewrite
big_sepM_empty
.
-
by
rewrite
big_sepM_empty
.
Qed
.
Qed
.
Lemma
box_insert_empty
E
f
P
Q
:
Lemma
box_insert_empty
Q
E
f
P
:
▷
box
N
f
P
=
{
E
}
=∗
∃
γ
,
⌜
f
!!
γ
=
None
⌝
∗
▷
box
N
f
P
=
{
E
}
=∗
∃
γ
,
⌜
f
!!
γ
=
None
⌝
∗
slice
N
γ
Q
∗
▷
box
N
(
<
[
γ
:=
false
]
>
f
)
(
Q
∗
P
)
.
slice
N
γ
Q
∗
▷
box
N
(
<
[
γ
:=
false
]
>
f
)
(
Q
∗
P
)
.
Proof
.
Proof
.
...
@@ -107,10 +111,10 @@ Qed.
...
@@ -107,10 +111,10 @@ Qed.
Lemma
box_delete_empty
E
f
P
Q
γ
:
Lemma
box_delete_empty
E
f
P
Q
γ
:
↑
N
⊆
E
→
↑
N
⊆
E
→
f
!!
γ
=
Some
false
→
f
!!
γ
=
Some
false
→
slice
N
γ
Q
∗
▷
box
N
f
P
=
{
E
}
=∗
∃
P'
,
slice
N
γ
Q
-
∗
▷
box
N
f
P
=
{
E
}
=∗
∃
P'
,
▷
▷
(
P
≡
(
Q
∗
P'
))
∗
▷
box
N
(
delete
γ
f
)
P'
.
▷
▷
(
P
≡
(
Q
∗
P'
))
∗
▷
box
N
(
delete
γ
f
)
P'
.
Proof
.
Proof
.
iIntros
(??)
"
[
#Hinv H
]
"
;
iDestruct
"H"
as
(
Φ
)
"[#HeqP Hf]"
.
iIntros
(??)
"#Hinv H"
;
iDestruct
"H"
as
(
Φ
)
"[#HeqP Hf]"
.
iExists
([
∗
map
]
γ'
↦_
∈
delete
γ
f
,
Φ
γ'
)
%
I
.
iExists
([
∗
map
]
γ'
↦_
∈
delete
γ
f
,
Φ
γ'
)
%
I
.
iInv
N
as
(
b
)
"(Hγ & #HγQ &_)"
"Hclose"
.
iInv
N
as
(
b
)
"(Hγ & #HγQ &_)"
"Hclose"
.
iApply
fupd_trans_frame
;
iFrame
"Hclose"
;
iModIntro
;
iNext
.
iApply
fupd_trans_frame
;
iFrame
"Hclose"
;
iModIntro
;
iNext
.
...
@@ -127,9 +131,9 @@ Qed.
...
@@ -127,9 +131,9 @@ Qed.
Lemma
box_fill
E
f
γ
P
Q
:
Lemma
box_fill
E
f
γ
P
Q
:
↑
N
⊆
E
→
↑
N
⊆
E
→
f
!!
γ
=
Some
false
→
f
!!
γ
=
Some
false
→
slice
N
γ
Q
∗
▷
Q
∗
▷
box
N
f
P
=
{
E
}
=∗
▷
box
N
(
<
[
γ
:=
true
]
>
f
)
P
.
slice
N
γ
Q
-
∗
▷
Q
-
∗
▷
box
N
f
P
=
{
E
}
=∗
▷
box
N
(
<
[
γ
:=
true
]
>
f
)
P
.
Proof
.
Proof
.
iIntros
(??)
"
(
#Hinv
&
HQ
& H)
"
;
iDestruct
"H"
as
(
Φ
)
"[#HeqP Hf]"
.
iIntros
(??)
"#Hinv HQ
H
"
;
iDestruct
"H"
as
(
Φ
)
"[#HeqP Hf]"
.
iInv
N
as
(
b'
)
"(>Hγ & #HγQ & _)"
"Hclose"
.
iInv
N
as
(
b'
)
"(>Hγ & #HγQ & _)"
"Hclose"
.
iDestruct
(
big_sepM_later
_
f
with
"Hf"
)
as
"Hf"
.
iDestruct
(
big_sepM_later
_
f
with
"Hf"
)
as
"Hf"
.
iDestruct
(
big_sepM_delete
_
f
_
false
with
"Hf"
)
iDestruct
(
big_sepM_delete
_
f
_
false
with
"Hf"
)
...
@@ -146,9 +150,9 @@ Qed.
...
@@ -146,9 +150,9 @@ Qed.
Lemma
box_empty
E
f
P
Q
γ
:
Lemma
box_empty
E
f
P
Q
γ
:
↑
N
⊆
E
→
↑
N
⊆
E
→
f
!!
γ
=
Some
true
→
f
!!
γ
=
Some
true
→
slice
N
γ
Q
∗
▷
box
N
f
P
=
{
E
}
=∗
▷
Q
∗
▷
box
N
(
<
[
γ
:=
false
]
>
f
)
P
.
slice
N
γ
Q
-
∗
▷
box
N
f
P
=
{
E
}
=∗
▷
Q
∗
▷
box
N
(
<
[
γ
:=
false
]
>
f
)
P
.
Proof
.
Proof
.
iIntros
(??)
"
[
#Hinv H
]
"
;
iDestruct
"H"
as
(
Φ
)
"[#HeqP Hf]"
.
iIntros
(??)
"#Hinv H"
;
iDestruct
"H"
as
(
Φ
)
"[#HeqP Hf]"
.
iInv
N
as
(
b
)
"(>Hγ & #HγQ & HQ)"
"Hclose"
.
iInv
N
as
(
b
)
"(>Hγ & #HγQ & HQ)"
"Hclose"
.
iDestruct
(
big_sepM_later
_
f
with
"Hf"
)
as
"Hf"
.
iDestruct
(
big_sepM_later
_
f
with
"Hf"
)
as
"Hf"
.
iDestruct
(
big_sepM_delete
_
f
with
"Hf"
)
iDestruct
(
big_sepM_delete
_
f
with
"Hf"
)
...
@@ -163,36 +167,35 @@ Proof.
...
@@ -163,36 +167,35 @@ Proof.
iFrame
;
eauto
.
iFrame
;
eauto
.
Qed
.
Qed
.
Lemma
box_insert_full
E
f
P
Q
:
Lemma
box_insert_full
Q
E
f
P
:
↑
N
⊆
E
→
↑
N
⊆
E
→
▷
Q
∗
▷
box
N
f
P
=
{
E
}
=∗
∃
γ
,
⌜
f
!!
γ
=
None
⌝
∗
▷
Q
-
∗
▷
box
N
f
P
=
{
E
}
=∗
∃
γ
,
⌜
f
!!
γ
=
None
⌝
∗
slice
N
γ
Q
∗
▷
box
N
(
<
[
γ
:=
true
]
>
f
)
(
Q
∗
P
)
.
slice
N
γ
Q
∗
▷
box
N
(
<
[
γ
:=
true
]
>
f
)
(
Q
∗
P
)
.
Proof
.
Proof
.
iIntros
(?)
"
[
HQ Hbox
]
"
.
iIntros
(?)
"HQ Hbox"
.
iMod
(
box_insert_empty
with
"Hbox"
)
as
(
γ
)
"(% & #Hslice & Hbox)"
.
iMod
(
box_insert_empty
with
"Hbox"
)
as
(
γ
)
"(% & #Hslice & Hbox)"
.
iExists
γ
.
iFrame
"%#"
.
iExists
γ
.
iFrame
"%#"
.
iMod
(
box_fill
with
"Hslice HQ Hbox"
)
.
done
.
iMod
(
box_fill
with
"[$Hslice $HQ $Hbox]"
)
.
done
.
by
apply
lookup_insert
.
by
rewrite
insert_insert
.
by
apply
lookup_insert
.
by
rewrite
insert_insert
.
Qed
.
Qed
.
Lemma
box_delete_full
E
f
P
Q
γ
:
Lemma
box_delete_full
E
f
P
Q
γ
:
↑
N
⊆
E
→
↑
N
⊆
E
→
f
!!
γ
=
Some
true
→
f
!!
γ
=
Some
true
→
slice
N
γ
Q
∗
▷
box
N
f
P
=
{
E
}
=∗
slice
N
γ
Q
-
∗
▷
box
N
f
P
=
{
E
}
=∗
▷
Q
∗
∃
P'
,
▷
▷
(
P
≡
(
Q
∗
P'
))
∗
▷
box
N
(
delete
γ
f
)
P'
.
∃
P'
,
▷
Q
∗
▷
▷
(
P
≡
(
Q
∗
P'
))
∗
▷
box
N
(
delete
γ
f
)
P'
.
Proof
.
Proof
.
iIntros
(??)
"
[
#Hslice Hbox
]
"
.
iIntros
(??)
"#Hslice Hbox"
.
iMod
(
box_empty
with
"
[$
Hslice
$
Hbox
]
"
)
as
"[$ Hbox]"
;
try
done
.
iMod
(
box_empty
with
"Hslice Hbox"
)
as
"[$ Hbox]"
;
try
done
.
iMod
(
box_delete_empty
with
"
[$
Hslice
$
Hbox
]
"
)
as
(
P'
)
"[Heq Hbox]"
.
iMod
(
box_delete_empty
with
"Hslice Hbox"
)
as
(
P'
)
"[Heq Hbox]"
.
done
.
by
apply
lookup_insert
.
done
.
by
apply
lookup_insert
.
iExists
P'
.
iFrame
.
rewrite
-
insert_delete
delete_insert
?lookup_delete
//.
iExists
P'
.
iFrame
.
rewrite
-
insert_delete
delete_insert
?lookup_delete
//.
Qed
.
Qed
.
Lemma
box_fill_all
E
f
P
:
Lemma
box_fill_all
E
f
P
:
↑
N
⊆
E
→
↑
N
⊆
E
→
box
N
f
P
∗
▷
P
=
{
E
}
=∗
box
N
(
const
true
<$>
f
)
P
.
box
N
f
P
-
∗
▷
P
=
{
E
}
=∗
box
N
(
const
true
<$>
f
)
P
.
Proof
.
Proof
.
iIntros
(?)
"
[
H HP
]
"
;
iDestruct
"H"
as
(
Φ
)
"[#HeqP Hf]"
.
iIntros
(?)
"H HP"
;
iDestruct
"H"
as
(
Φ
)
"[#HeqP Hf]"
.
iExists
Φ
;
iSplitR
;
first
by
rewrite
big_sepM_fmap
.
iExists
Φ
;
iSplitR
;
first
by
rewrite
big_sepM_fmap
.
rewrite
internal_eq_iff
later_iff
big_sepM_later
.
rewrite
internal_eq_iff
later_iff
big_sepM_later
.
iDestruct
(
"HeqP"
with
"HP"
)
as
"HP"
.
iDestruct
(
"HeqP"
with
"HP"
)
as
"HP"
.
...
@@ -226,6 +229,54 @@ Proof.
...
@@ -226,6 +229,54 @@ Proof.
-
rewrite
internal_eq_iff
later_iff
big_sepM_later
.
by
iApply
"HeqP"
.
-
rewrite
internal_eq_iff
later_iff
big_sepM_later
.
by
iApply
"HeqP"
.
-
iExists
Φ
;
iSplit
;
by
rewrite
big_sepM_fmap
.
-
iExists
Φ
;
iSplit
;
by
rewrite
big_sepM_fmap
.
Qed
.
Qed
.
Lemma
box_split
E
f
P
Q1
Q2
γ
b
:
↑
N
⊆
E
→
f
!!
γ
=
Some
b
→
slice
N
γ
(
Q1
∗
Q2
)
-∗
▷
box
N
f
P
=
{
E
}
=∗
∃
γ1
γ2
,
⌜
delete
γ
f
!!
γ1
=
None
⌝
∗
⌜
delete
γ
f
!!
γ2
=
None
⌝
∗
slice
N
γ1
Q1
∗
slice
N
γ2
Q2
∗
▷
box
N
(
<
[
γ2
:=
b
]
>
(
<
[
γ1
:=
b
]
>
(
delete
γ
f
)))
P
.
Proof
.
iIntros
(??)
"#Hslice Hbox"
.
destruct
b
.
-
iMod
(
box_delete_full
with
"Hslice Hbox"
)
as
(
P'
)
"([HQ1 HQ2] & Heq & Hbox)"
;
try
done
.
iMod
(
box_insert_full
Q1
with
"HQ1 Hbox"
)
as
(
γ1
)
"(% & #Hslice1 & Hbox)"
.
done
.
iMod
(
box_insert_full
Q2
with
"HQ2 Hbox"
)
as
(
γ2
)
"(% & #Hslice2 & Hbox)"
.
done
.
iExists
γ1
,
γ2
.
iFrame
"%#"
.
iModIntro
.
iSplit
.
{
iPureIntro
.
by
eapply
lookup_insert_None
.
}
iNext
.
eapply
internal_eq_rewrite_contractive
;
[
by
apply
_|
|
by
eauto
]
.
iNext
.
iRewrite
"Heq"
.
iPureIntro
.
rewrite
assoc
.
f_equiv
.
by
rewrite
comm
.
done
.
-
iMod
(
box_delete_empty
with
"Hslice Hbox"
)
as
(
P'
)
"[Heq Hbox]"
;
try
done
.
iMod
(
box_insert_empty
Q1
with
"Hbox"
)
as
(
γ1
)
"(% & #Hslice1 & Hbox)"
.
iMod
(
box_insert_empty
Q2
with
"Hbox"
)
as
(
γ2
)
"(% & #Hslice2 & Hbox)"
.
iExists
γ1
,
γ2
.
iFrame
"%#"
.
iModIntro
.
iSplit
.
{
iPureIntro
.
by
eapply
lookup_insert_None
.
}
iNext
.
eapply
internal_eq_rewrite_contractive
;
[
by
apply
_|
|
by
eauto
]
.
iNext
.
iRewrite
"Heq"
.
iPureIntro
.
rewrite
assoc
.
f_equiv
.
by
rewrite
comm
.
done
.
Qed
.
Lemma
box_combine
E
f
P
Q1
Q2
γ1
γ2
b
:
↑
N
⊆
E
→
γ1
≠
γ2
→
f
!!
γ1
=
Some
b
→
f
!!
γ2
=
Some
b
→
slice
N
γ1
Q1
-∗
slice
N
γ2
Q2
-∗
▷
box
N
f
P
=
{
E
}
=∗
∃
γ
,
⌜
delete
γ2
(
delete
γ1
f
)
!!
γ
=
None
⌝
∗
slice
N
γ
(
Q1
∗
Q2
)
∗
▷
box
N
(
<
[
γ
:=
b
]
>
(
delete
γ2
(
delete
γ1
f
)))
P
.
Proof
.
iIntros
(????)
"#Hslice1 #Hslice2 Hbox"
.
destruct
b
.
-
iMod
(
box_delete_full
with
"Hslice1 Hbox"
)
as
(
P1
)
"(HQ1 & Heq1 & Hbox)"
;
try
done
.
iMod
(
box_delete_full
with
"Hslice2 Hbox"
)
as
(
P2
)
"(HQ2 & Heq2 & Hbox)"
.
done
.
by
simplify_map_eq
.
iMod
(
box_insert_full
(
Q1
∗
Q2
)
%
I
with
"[$HQ1 $HQ2] Hbox"
)
as
(
γ
)
"(% & #Hslice & Hbox)"
.
done
.
iExists
γ
.
iFrame
"%#"
.
iModIntro
.
iNext
.
eapply
internal_eq_rewrite_contractive
;
[
by
apply
_|
|
by
eauto
]
.
iNext
.
iRewrite
"Heq1"
.
iRewrite
"Heq2"
.
by
rewrite
assoc
.
-
iMod
(
box_delete_empty
with
"Hslice1 Hbox"
)
as
(
P1
)
"(Heq1 & Hbox)"
;
try
done
.
iMod
(
box_delete_empty
with
"Hslice2 Hbox"
)
as
(
P2
)
"(Heq2 & Hbox)"
.
done
.
by
simplify_map_eq
.
iMod
(
box_insert_empty
(
Q1
∗
Q2
)
%
I
with
"Hbox"
)
as
(
γ
)
"(% & #Hslice & Hbox)"
.
iExists
γ
.
iFrame
"%#"
.
iModIntro
.
iNext
.
eapply
internal_eq_rewrite_contractive
;
[
by
apply
_|
|
by
eauto
]
.
iNext
.
iRewrite
"Heq1"
.
iRewrite
"Heq2"
.
by
rewrite
assoc
.
Qed
.
End
box
.
End
box
.
Typeclasses
Opaque
slice
box
.
Typeclasses
Opaque
slice
box
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment