Skip to content
Snippets Groups Projects
Commit 43d45c6b authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Improve iFrame tactic

- It can now also frame under later.
- Better treatment of evars, it now won't end up in loops whenever the goal
  involves sub-formulas ?P and it trying to apply all framing rules eagerly.
- It no longer delta expands while framing.
- Better clean up of True sub-formulas after a successful frame. For example,
  framing "P" in "▷ ▷ P ★ Q" yields just "Q" instead of "▷ True ★ Q" or so.
parent 1747d779
No related branches found
No related tags found
No related merge requests found
......@@ -104,7 +104,8 @@ Proof.
iPvs (saved_prop_alloc (F:=idCF) _ P) as {γ} "#?".
iPvs (sts_alloc (barrier_inv l P) _ N (State Low {[ γ ]}))
"-" as {γ'} "[#? Hγ']"; eauto.
{ iNext. iFrame "Hl". iExists (const P). rewrite !big_sepS_singleton /=.
{ iNext. rewrite /barrier_inv /=. iFrame "Hl".
iExists (const P). rewrite !big_sepS_singleton /=.
iSplit; [|done]. by iIntros "> ?". }
iAssert (barrier_ctx γ' l P)%I as "#?".
{ rewrite /barrier_ctx. by repeat iSplit. }
......
......@@ -41,7 +41,7 @@ Lemma wp_par (Ψ1 Ψ2 : val → iProp) (e1 e2 : expr []) (Φ : val → iProp) :
v1 v2, Ψ1 v1 Ψ2 v2 -★ Φ (v1,v2)%V)
WP e1 || e2 {{ Φ }}.
Proof.
iIntros {?} "(#Hh&H1&H2&H)". iApply par_spec; auto.
iIntros {?} "(#Hh&H1&H2&H)". iApply (par_spec Ψ1 Ψ2); auto.
iFrame "Hh H". iSplitL "H1"; by wp_let.
Qed.
End proof.
......@@ -712,42 +712,65 @@ Proof.
Qed.
(** * Framing *)
Class Frame (R P Q : uPred M) := frame : (R Q) P.
(** The [option] is to account for formulas that can be framed entirely, so
we do not end up with [True]s everywhere. *)
Class Frame (R P : uPred M) (mQ : option (uPred M)) :=
frame : (R from_option True mQ) P.
Arguments frame : clear implicits.
Global Instance frame_here R : Frame R R True | 1.
Instance frame_here R : Frame R R None | 1.
Proof. by rewrite /Frame right_id. Qed.
Global Instance frame_here_l R P : Frame R (R P) P | 0.
Proof. done. Qed.
Global Instance frame_here_r R P : Frame R (P R) P | 0.
Proof. by rewrite /Frame comm. Qed.
Global Instance frame_here_and_l R P : Frame R (R P) P | 0.
Proof. by rewrite /Frame sep_and. Qed.
Global Instance frame_here_and_r R P : Frame R (P R) P | 0.
Proof. by rewrite /Frame sep_and comm. Qed.
Global Instance frame_sep_l R P1 P2 Q :
Frame R P1 Q Frame R (P1 P2) (Q P2).
Proof. rewrite /Frame => <-. solve_sep_entails. Qed.
Global Instance frame_sep_r R P1 P2 Q :
Frame R P2 Q Frame R (P1 P2) (P1 Q).
Proof. rewrite /Frame => <-. solve_sep_entails. Qed.
Global Instance frame_or R P1 P2 Q1 Q2 :
Frame R P1 Q1 Frame R P2 Q2 Frame R (P1 P2) (Q1 Q2).
Proof. rewrite /Frame=> <- <-. by rewrite -sep_or_l. Qed.
Global Instance frame_exist {A} R (Φ Ψ : A uPred M) :
( a, Frame R (Φ a) (Ψ a)) Frame R ( x, Φ x) ( x, Ψ x).
Instance frame_sep_l R P1 P2 mQ :
Frame R P1 mQ
Frame R (P1 P2) (Some $ if mQ is Some Q then Q P2 else P2)%I.
Proof. rewrite /Frame => <-. destruct mQ; simpl; solve_sep_entails. Qed.
Instance frame_sep_r R P1 P2 mQ :
Frame R P2 mQ
Frame R (P1 P2) (Some $ if mQ is Some Q then P1 Q else P1)%I.
Proof. rewrite /Frame => <-. destruct mQ; simpl; solve_sep_entails. Qed.
Instance frame_and_l R P1 P2 mQ :
Frame R P1 mQ
Frame R (P1 P2) (Some $ if mQ is Some Q then Q P2 else P2)%I.
Proof. rewrite /Frame => <-. destruct mQ; simpl; eauto 10 with I. Qed.
Instance frame_and_r R P1 P2 mQ :
Frame R P2 mQ
Frame R (P1 P2) (Some $ if mQ is Some Q then P1 Q else P1)%I.
Proof. rewrite /Frame => <-. destruct mQ; simpl; eauto 10 with I. Qed.
Instance frame_or R P1 P2 mQ1 mQ2 :
Frame R P1 mQ1 Frame R P2 mQ2
Frame R (P1 P2) (match mQ1, mQ2 with
| Some Q1, Some Q2 => Some (Q1 Q2)%I | _, _ => None
end).
Proof.
rewrite /Frame=> <- <-.
destruct mQ1 as [Q1|], mQ2 as [Q2|]; simpl; auto with I.
by rewrite -sep_or_l.
Qed.
Instance frame_later R P mQ :
Frame R P mQ Frame R ( P) (if mQ is Some Q then Some ( Q) else None)%I.
Proof.
rewrite /Frame=><-.
by destruct mQ; rewrite /= later_sep -(later_intro R) ?later_True.
Qed.
Instance frame_exist {A} R (Φ : A uPred M) :
( a, Frame R (Φ a) ( a))
Frame R ( x, Φ x) (Some ( x, if x is Some Q then Q else True))%I.
Proof. rewrite /Frame=> ?. by rewrite sep_exist_l; apply exist_mono. Qed.
Global Instance frame_forall {A} R (Φ Ψ : A uPred M) :
( a, Frame R (Φ a) (Ψ a)) Frame R ( x, Φ x) ( x, Ψ x).
Instance frame_forall {A} R (Φ : A uPred M) :
( a, Frame R (Φ a) ( a))
Frame R ( x, Φ x) (Some ( x, if x is Some Q then Q else True))%I.
Proof. rewrite /Frame=> ?. by rewrite sep_forall_l; apply forall_mono. Qed.
Lemma tac_frame Δ Δ' i p R P Q :
envs_lookup_delete i Δ = Some (p, R, Δ')%I Frame R P Q
(if p then Δ else Δ') Q Δ P.
Lemma tac_frame Δ Δ' i p R P mQ :
envs_lookup_delete i Δ = Some (p, R, Δ')%I Frame R P mQ
(if mQ is Some Q then (if p then Δ else Δ') Q else True)
Δ P.
Proof.
intros [? ->]%envs_lookup_delete_Some ? HQ; destruct p.
- by rewrite envs_lookup_persistent_sound // HQ always_elim.
- rewrite envs_lookup_sound //; simpl. by rewrite HQ.
intros [? ->]%envs_lookup_delete_Some ? HQ. destruct p.
- rewrite envs_lookup_persistent_sound // always_elim.
rewrite -(frame R P). destruct mQ as [Q|]; rewrite ?HQ /=; auto with I.
- rewrite envs_lookup_sound //; simpl.
rewrite -(frame R P). destruct mQ as [Q|]; rewrite ?HQ /=; auto with I.
Qed.
(** * Disjunction *)
......@@ -842,3 +865,19 @@ Proof.
by rewrite right_id wand_elim_r.
Qed.
End tactics.
(** Make sure we can frame in the presence of evars without making Coq loop due
to it applying these rules too eager.
Note: that [Hint Mode Frame - + + - : typeclass_instances] would disable framing
with evars entirely.
Note: we give presence to framing on the left. *)
Hint Extern 0 (Frame _ ?R _) => class_apply @frame_here : typeclass_instances.
Hint Extern 9 (Frame _ (_ _) _) => class_apply @frame_sep_l : typeclass_instances.
Hint Extern 10 (Frame _ (_ _) _) => class_apply @frame_sep_r : typeclass_instances.
Hint Extern 9 (Frame _ (_ _) _) => class_apply @frame_and_l : typeclass_instances.
Hint Extern 10 (Frame _ (_ _) _) => class_apply @frame_and_r : typeclass_instances.
Hint Extern 10 (Frame _ (_ _) _) => class_apply @frame_or : typeclass_instances.
Hint Extern 10 (Frame _ ( _) _) => class_apply @frame_later : typeclass_instances.
Hint Extern 10 (Frame _ ( _, _) _) => class_apply @frame_exist : typeclass_instances.
Hint Extern 10 (Frame _ ( _, _) _) => class_apply @frame_forall : typeclass_instances.
......@@ -21,8 +21,9 @@ Global Instance exists_split_pvs {A} E1 E2 P (Φ : A → iProp Λ Σ) :
Proof.
rewrite /ExistSplit=><-. apply exist_elim=> a. by rewrite -(exist_intro a).
Qed.
Global Instance frame_pvs E1 E2 R P Q :
Frame R P Q Frame R (|={E1,E2}=> P) (|={E1,E2}=> Q).
Instance frame_pvs E1 E2 R P mQ :
Frame R P mQ
Frame R (|={E1,E2}=> P) (Some (|={E1,E2}=> from_option True mQ))%I.
Proof. rewrite /Frame=><-. by rewrite pvs_frame_l. Qed.
Global Instance to_wand_pvs E1 E2 R P Q :
ToWand R P Q ToWand R (|={E1,E2}=> P) (|={E1,E2}=> Q).
......@@ -96,6 +97,9 @@ Proof.
Qed.
End pvs.
Hint Extern 10 (Frame _ (|={_,_}=> _) _) =>
class_apply frame_pvs : typeclass_instances.
Tactic Notation "iPvsIntro" := apply tac_pvs_intro.
Tactic Notation "iPvsCore" constr(H) :=
......
......@@ -8,10 +8,15 @@ Context {Λ : language} {Σ : iFunctor}.
Implicit Types P Q : iProp Λ Σ.
Implicit Types Φ : val Λ iProp Λ Σ.
Global Instance frame_wp E e R Φ Ψ :
( v, Frame R (Φ v) (Ψ v)) Frame R (WP e @ E {{ Φ }}) (WP e @ E {{ Ψ }}).
Instance frame_wp E e R Φ :
( v, Frame R (Φ v) ( v))
Frame R (WP e @ E {{ Φ }})
(Some (WP e @ E {{ v, if v is Some Q then Q else True }}))%I.
Proof. rewrite /Frame=> HR. rewrite wp_frame_l. apply wp_mono, HR. Qed.
Global Instance fsa_split_wp E e Φ :
FSASplit (WP e @ E {{ Φ }})%I E (wp_fsa e) (language.atomic e) Φ.
Proof. split. done. apply _. Qed.
End weakestpre.
Hint Extern 10 (Frame _ (WP _ @ _ {{ _ }}) _) =>
class_apply frame_wp : typeclass_instances.
\ No newline at end of file
......@@ -39,4 +39,8 @@ Proof.
iSplitL "H3".
* iFrame "H3". by iRight.
* iSplitL "HQ". iAssumption. by iSplitL "H1".
Qed.
\ No newline at end of file
Qed.
Lemma demo_3 (M : cmraT) (P1 P2 P3 : uPred M) :
(P1 P2 P3) ( P1 (P2 x, (P3 x = 0) P3)).
Proof. iIntros "($ & $ & H)". iFrame "H". simpl. iNext. by iExists 0. Qed.
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment