Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Rice Wine
Iris
Commits
184838d3
Commit
184838d3
authored
8 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Sum COFE.
parent
5b7f3609
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
algebra/cofe.v
+84
-1
84 additions, 1 deletion
algebra/cofe.v
with
84 additions
and
1 deletion
algebra/cofe.v
+
84
−
1
View file @
184838d3
...
...
@@ -422,6 +422,89 @@ Proof.
apply
cofe_morC_map_ne
;
apply
cFunctor_contractive
=>
i
?;
split
;
by
apply
Hfg
.
Qed
.
(** Sum *)
Section
sum
.
Context
{
A
B
:
cofeT
}
.
Instance
sum_dist
:
Dist
(
A
+
B
)
:=
λ
n
,
sum_relation
(
dist
n
)
(
dist
n
)
.
Global
Instance
inl_ne
:
Proper
(
dist
n
==>
dist
n
)
(
@
inl
A
B
)
:=
_
.
Global
Instance
inr_ne
:
Proper
(
dist
n
==>
dist
n
)
(
@
inr
A
B
)
:=
_
.
Global
Instance
inl_ne_inj
:
Inj
(
dist
n
)
(
dist
n
)
(
@
inl
A
B
)
:=
_
.
Global
Instance
inr_ne_inj
:
Inj
(
dist
n
)
(
dist
n
)
(
@
inr
A
B
)
:=
_
.
Program
Definition
inl_chain
(
c
:
chain
(
A
+
B
))
(
a
:
A
)
:
chain
A
:=
{|
chain_car
n
:=
match
c
n
return
_
with
inl
a'
=>
a'
|
_
=>
a
end
|}
.
Next
Obligation
.
intros
c
a
n
i
?;
simpl
.
by
destruct
(
chain_cauchy
c
n
i
)
.
Qed
.
Program
Definition
inr_chain
(
c
:
chain
(
A
+
B
))
(
b
:
B
)
:
chain
B
:=
{|
chain_car
n
:=
match
c
n
return
_
with
inr
b'
=>
b'
|
_
=>
b
end
|}
.
Next
Obligation
.
intros
c
b
n
i
?;
simpl
.
by
destruct
(
chain_cauchy
c
n
i
)
.
Qed
.
Instance
sum_compl
:
Compl
(
A
+
B
)
:=
λ
c
,
match
c
0
with
|
inl
a
=>
inl
(
compl
(
inl_chain
c
a
))
|
inr
b
=>
inr
(
compl
(
inr_chain
c
b
))
end
.
Definition
sum_cofe_mixin
:
CofeMixin
(
A
+
B
)
.
Proof
.
split
.
-
intros
x
y
;
split
=>
Hx
.
+
destruct
Hx
=>
n
;
constructor
;
by
apply
equiv_dist
.
+
destruct
(
Hx
0
);
constructor
;
apply
equiv_dist
=>
n
;
by
apply
(
inj
_)
.
-
apply
_
.
-
destruct
1
;
constructor
;
by
apply
dist_S
.
-
intros
n
c
;
rewrite
/
compl
/
sum_compl
.
feed
inversion
(
chain_cauchy
c
0
n
);
first
auto
with
lia
;
constructor
.
+
rewrite
(
conv_compl
n
(
inl_chain
c
_))
/=.
destruct
(
c
n
);
naive_solver
.
+
rewrite
(
conv_compl
n
(
inr_chain
c
_))
/=.
destruct
(
c
n
);
naive_solver
.
Qed
.
Canonical
Structure
sumC
:
cofeT
:=
CofeT
(
A
+
B
)
sum_cofe_mixin
.
Global
Instance
inl_timeless
(
x
:
A
)
:
Timeless
x
→
Timeless
(
inl
x
)
.
Proof
.
inversion_clear
2
;
constructor
;
by
apply
(
timeless
_)
.
Qed
.
Global
Instance
inr_timeless
(
y
:
B
)
:
Timeless
y
→
Timeless
(
inr
y
)
.
Proof
.
inversion_clear
2
;
constructor
;
by
apply
(
timeless
_)
.
Qed
.
Global
Instance
sum_discrete_cofe
:
Discrete
A
→
Discrete
B
→
Discrete
sumC
.
Proof
.
intros
??
[?|?];
apply
_
.
Qed
.
End
sum
.
Arguments
sumC
:
clear
implicits
.
Typeclasses
Opaque
sum_dist
.
Instance
sum_map_ne
{
A
A'
B
B'
:
cofeT
}
n
:
Proper
((
dist
n
==>
dist
n
)
==>
(
dist
n
==>
dist
n
)
==>
dist
n
==>
dist
n
)
(
@
sum_map
A
A'
B
B'
)
.
Proof
.
intros
f
f'
Hf
g
g'
Hg
??;
destruct
1
;
constructor
;
[
by
apply
Hf
|
by
apply
Hg
]
.
Qed
.
Definition
sumC_map
{
A
A'
B
B'
}
(
f
:
A
-
n
>
A'
)
(
g
:
B
-
n
>
B'
)
:
sumC
A
B
-
n
>
sumC
A'
B'
:=
CofeMor
(
sum_map
f
g
)
.
Instance
sumC_map_ne
{
A
A'
B
B'
}
n
:
Proper
(
dist
n
==>
dist
n
==>
dist
n
)
(
@
sumC_map
A
A'
B
B'
)
.
Proof
.
intros
f
f'
Hf
g
g'
Hg
[?|?];
constructor
;
[
apply
Hf
|
apply
Hg
]
.
Qed
.
Program
Definition
sumCF
(
F1
F2
:
cFunctor
)
:
cFunctor
:=
{|
cFunctor_car
A
B
:=
sumC
(
cFunctor_car
F1
A
B
)
(
cFunctor_car
F2
A
B
);
cFunctor_map
A1
A2
B1
B2
fg
:=
sumC_map
(
cFunctor_map
F1
fg
)
(
cFunctor_map
F2
fg
)
|}
.
Next
Obligation
.
intros
??
A1
A2
B1
B2
n
???;
by
apply
sumC_map_ne
;
apply
cFunctor_ne
.
Qed
.
Next
Obligation
.
by
intros
F1
F2
A
B
[?|?];
rewrite
/=
!
cFunctor_id
.
Qed
.
Next
Obligation
.
intros
F1
F2
A1
A2
A3
B1
B2
B3
f
g
f'
g'
[?|?];
simpl
;
by
rewrite
!
cFunctor_compose
.
Qed
.
Instance
sumCF_contractive
F1
F2
:
cFunctorContractive
F1
→
cFunctorContractive
F2
→
cFunctorContractive
(
sumCF
F1
F2
)
.
Proof
.
intros
??
A1
A2
B1
B2
n
???;
by
apply
sumC_map_ne
;
apply
cFunctor_contractive
.
Qed
.
(** Discrete cofe *)
Section
discrete_cofe
.
Context
`{
Equiv
A
,
@
Equivalence
A
(
≡
)}
.
...
...
@@ -455,7 +538,6 @@ Section option.
Context
{
A
:
cofeT
}
.
Instance
option_dist
:
Dist
(
option
A
)
:=
λ
n
,
option_Forall2
(
dist
n
)
.
Lemma
dist_option_Forall2
n
mx
my
:
mx
≡
{
n
}
≡
my
↔
option_Forall2
(
dist
n
)
mx
my
.
Proof
.
done
.
Qed
.
...
...
@@ -614,5 +696,6 @@ Qed.
Notation
"∙"
:=
idCF
:
cFunctor_scope
.
Notation
"F1 -n> F2"
:=
(
cofe_morCF
F1
%
CF
F2
%
CF
)
:
cFunctor_scope
.
Notation
"F1 * F2"
:=
(
prodCF
F1
%
CF
F2
%
CF
)
:
cFunctor_scope
.
Notation
"F1 + F2"
:=
(
sumCF
F1
%
CF
F2
%
CF
)
:
cFunctor_scope
.
Notation
"▶ F"
:=
(
laterCF
F
%
CF
)
(
at
level
20
,
right
associativity
)
:
cFunctor_scope
.
Coercion
constCF
:
cofeT
>->
cFunctor
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment