Skip to content
Snippets Groups Projects
Commit e24ee0af authored by Filip Sieczkowski's avatar Filip Sieczkowski
Browse files

Fixed definition of erasure, proved some properties of view-shifts

(open, close, transitive, false), stated some other.
parent 5517602d
No related branches found
No related tags found
No related merge requests found
...@@ -136,12 +136,12 @@ Module Iris (RP RL : PCM_T) (C : CORE_LANG RP). ...@@ -136,12 +136,12 @@ Module Iris (RP RL : PCM_T) (C : CORE_LANG RP).
option_map (fun r => (pcm_unit _, r)) r. option_map (fun r => (pcm_unit _, r)) r.
(** Physical part **) (** Physical part **)
Definition ownP (r : option RP.res) : Props := Definition ownP (r : RP.res) : Props :=
own (injFst r). own (injFst (Some r)).
(** Logical part **) (** Logical part **)
Definition ownL (r : option RL.res) : Props := Definition ownL (r : RL.res) : Props :=
own (injSnd r). own (injSnd (Some r)).
Notation "□ p" := (box p) (at level 30, right associativity) : iris_scope. Notation "□ p" := (box p) (at level 30, right associativity) : iris_scope.
Notation "⊤" := (top : Props) : iris_scope. Notation "⊤" := (top : Props) : iris_scope.
...@@ -157,44 +157,102 @@ Module Iris (RP RL : PCM_T) (C : CORE_LANG RP). ...@@ -157,44 +157,102 @@ Module Iris (RP RL : PCM_T) (C : CORE_LANG RP).
Notation "∃ x : T , p" := (all n[(fun x : T => p)] : Props) (at level 60, x ident, no associativity) : iris_scope. Notation "∃ x : T , p" := (all n[(fun x : T => p)] : Props) (at level 60, x ident, no associativity) : iris_scope.
Section Erasure. Section Erasure.
Global Instance preo_unit : preoType () := disc_preo ().
Local Open Scope bi_scope.
Local Open Scope pcm_scope. Local Open Scope pcm_scope.
Local Open Scope bi_scope.
Local Instance eqRes : Setoid res := discreteType.
(* First, we need to erase a finite map. This won't be pretty, for
now, since the library does not provide enough
constructs. Hopefully we can provide a fold that'd work for
that at some point
*)
Fixpoint comp_list (xs : list res) : res :=
match xs with
| nil => 1
| (x :: xs)%list => x · comp_list xs
end.
Definition cod (m : nat -f> res) : list res := List.map snd (findom_t m).
Definition erase (m : nat -f> res) : res := comp_list (cod m).
Lemma erase_remove (rs : nat -f> res) i r (HLu : rs i = Some r) :
erase rs = r · erase (fdRemove i rs).
Proof.
destruct rs as [rs rsP]; unfold erase, cod, findom_f in *; simpl in *.
induction rs as [| [j s] ]; [discriminate |]; simpl in *.
destruct (comp i j); [inversion HLu; reflexivity | discriminate |].
simpl; rewrite IHrs by eauto using SS_tail.
rewrite !assoc; f_equal; rewrite comm; reflexivity.
Qed.
Lemma erase_insert_new (rs : nat -f> res) i r (HNLu : rs i = None) :
r · erase rs = erase (fdUpdate i r rs).
Proof.
destruct rs as [rs rsP]; unfold erase, cod, findom_f in *; simpl in *.
induction rs as [| [j s] ]; simpl in *; [reflexivity |].
destruct (comp i j); [discriminate | reflexivity |].
simpl; rewrite <- IHrs by eauto using SS_tail.
rewrite !assoc; f_equal; rewrite comm; reflexivity.
Qed.
Lemma erase_insert_old (rs : nat -f> res) i r1 r2 (HLu : rs i = Some r1) :
r2 · erase rs = erase (fdUpdate i (r1 · r2) rs).
Proof.
destruct rs as [rs rsP]; unfold erase, cod, findom_f in *; simpl in *.
induction rs as [| [j s] ]; [discriminate |]; simpl in *.
destruct (comp i j); [inversion HLu; subst; clear HLu | discriminate |].
- simpl; rewrite assoc, (comm r2); reflexivity.
- simpl; rewrite <- IHrs by eauto using SS_tail.
rewrite !assoc, (comm r2); reflexivity.
Qed.
Global Instance preo_unit : preoType () := disc_preo ().
(* XXX: logical state omitted, since it looks weird. Also, later over the whole deal. *) (* XXX: logical state omitted, since it looks weird. Also, later over the whole deal. *)
Program Definition erasure (σ : state) (m : mask) (r s : res) (w : Wld) : UPred () := Program Definition erasure (σ : state) (m : mask) (r s : res) (w : Wld) : UPred () :=
(mkUPred (fun n _ => (mkUPred (fun n _ =>
erase_state (option_map fst (r · s)) σ erase_state (option_map fst (r · s)) σ
/\ forall i π, m i -> w i == Some π -> (ı π) w n s) _). /\ exists rs : nat -f> res,
erase rs = s /\
forall i (Hm : m i),
(i dom rs <-> i dom w) /\
forall π ri (HLw : w i == Some π) (HLrs : rs i == Some ri),
ı π w n ri) _).
Next Obligation. Next Obligation.
intros n1 n2 _ _ HLe _ [HES HRS]; split; [assumption | clear HES; intros]. intros n1 n2 _ _ HLe _ [HES HRS]; split; [assumption |].
rewrite HLe; eauto. setoid_rewrite HLe; eassumption.
Qed. Qed.
Global Instance erasure_equiv σ m r s : Proper (equiv ==> equiv) (erasure σ m r s). Global Instance erasure_equiv σ m r s : Proper (equiv ==> equiv) (erasure σ m r s).
Proof. Proof.
intros w1 w2 EQw [| n] []; [reflexivity |]. intros w1 w2 EQw [| n] []; [reflexivity |].
split; intros [HES HRS]; (split; [tauto | clear HES; intros ? ? HM HLu]). split; intros [HES [rs [HE HM] ] ]; (split; [tauto | clear HES; exists rs]).
- rewrite <- EQw; eapply HRS; [eassumption |]. - split; [assumption | split; [| setoid_rewrite <- EQw; apply HM, Hm] ].
rewrite EQw; assumption. destruct (HM _ Hm) as [HD _]; rewrite HD; clear - EQw.
- rewrite EQw; eapply HRS; [eassumption |]. rewrite fdLookup_in; setoid_rewrite EQw; rewrite <- fdLookup_in; reflexivity.
rewrite <- EQw; assumption. - split; [assumption | split; [| setoid_rewrite EQw; apply HM, Hm] ].
destruct (HM _ Hm) as [HD _]; rewrite HD; clear - EQw.
rewrite fdLookup_in; setoid_rewrite <- EQw; rewrite <- fdLookup_in; reflexivity.
Qed. Qed.
Global Instance erasure_dist n σ m r s : Proper (dist n ==> dist n) (erasure σ m r s). Global Instance erasure_dist n σ m r s : Proper (dist n ==> dist n) (erasure σ m r s).
Proof. Proof.
intros w1 w2 EQw [| n'] [] HLt; [reflexivity |]; destruct n as [| n]; [now inversion HLt |]. intros w1 w2 EQw [| n'] [] HLt; [reflexivity |]; destruct n as [| n]; [now inversion HLt |].
split; intros [HES HRS]; (split; [tauto | clear HES; intros ? ? HM HLu]). split; intros [HES [rs [HE HM] ] ]; (split; [tauto | clear HES; exists rs]).
- assert (EQπ := EQw i); specialize (HRS i); rewrite HLu in EQπ; clear HLu. - split; [assumption | split; [rewrite <- (domeq _ _ _ EQw); apply HM, Hm |] ].
intros; destruct (HM _ Hm) as [_ HR]; clear HE HM Hm.
assert (EQπ := EQw i); rewrite HLw in EQπ; clear HLw.
destruct (w1 i) as [π' |]; [| contradiction]; do 3 red in EQπ. destruct (w1 i) as [π' |]; [| contradiction]; do 3 red in EQπ.
apply ı in EQπ; apply EQπ; [now auto with arith |]. apply ı in EQπ; apply EQπ; [now auto with arith |].
apply (met_morph_nonexp _ _ (ı π')) in EQw; apply EQw; [now auto with arith |]. apply (met_morph_nonexp _ _ (ı π')) in EQw; apply EQw; [now auto with arith |].
apply HRS; [assumption | reflexivity]. apply HR; [reflexivity | assumption].
- assert (EQπ := EQw i); specialize (HRS i); rewrite HLu in EQπ; clear HLu. - split; [assumption | split; [rewrite (domeq _ _ _ EQw); apply HM, Hm |] ].
intros; destruct (HM _ Hm) as [_ HR]; clear HE HM Hm.
assert (EQπ := EQw i); rewrite HLw in EQπ; clear HLw.
destruct (w2 i) as [π' |]; [| contradiction]; do 3 red in EQπ. destruct (w2 i) as [π' |]; [| contradiction]; do 3 red in EQπ.
apply ı in EQπ; apply EQπ; [now auto with arith |]. apply ı in EQπ; apply EQπ; [now auto with arith |].
apply (met_morph_nonexp _ _ (ı π')) in EQw; apply EQw; [now auto with arith |]. apply (met_morph_nonexp _ _ (ı π')) in EQw; apply EQw; [now auto with arith |].
apply HRS; [assumption | reflexivity]. apply HR; [reflexivity | assumption].
Qed. Qed.
End Erasure. End Erasure.
...@@ -205,7 +263,7 @@ Module Iris (RP RL : PCM_T) (C : CORE_LANG RP). ...@@ -205,7 +263,7 @@ Module Iris (RP RL : PCM_T) (C : CORE_LANG RP).
Local Open Scope mask_scope. Local Open Scope mask_scope.
Local Open Scope pcm_scope. Local Open Scope pcm_scope.
Local Obligation Tactic := intros. Local Obligation Tactic := intros.
Local Instance eqRes : Setoid res := discreteType. Local Existing Instance eqRes.
Program Definition preVS (m1 m2 : mask) (p : Props) (w : Wld) : UPred res := Program Definition preVS (m1 m2 : mask) (p : Props) (w : Wld) : UPred res :=
mkUPred (fun n r => forall w1 s rf mf σ k (HSub : w w1) (HLe : k <= n) mkUPred (fun n r => forall w1 s rf mf σ k (HSub : w w1) (HLe : k <= n)
...@@ -235,7 +293,6 @@ Module Iris (RP RL : PCM_T) (C : CORE_LANG RP). ...@@ -235,7 +293,6 @@ Module Iris (RP RL : PCM_T) (C : CORE_LANG RP).
Next Obligation. Next Obligation.
intros w1 w2 EQw n' r HLt; destruct n as [| n]; [now inversion HLt |]; split; intros HP w2'; intros. intros w1 w2 EQw n' r HLt; destruct n as [| n]; [now inversion HLt |]; split; intros HP w2'; intros.
- symmetry in EQw; assert (HDE := extend_dist _ _ _ _ EQw HSub). - symmetry in EQw; assert (HDE := extend_dist _ _ _ _ EQw HSub).
assert (HSE := extend_sub _ _ _ _ EQw HSub); specialize (HP (extend w2' w1)). assert (HSE := extend_sub _ _ _ _ EQw HSub); specialize (HP (extend w2' w1)).
edestruct HP as [w1'' [r' [s' [HW HH] ] ] ]; try eassumption; clear HP; [ | ]. edestruct HP as [w1'' [r' [s' [HW HH] ] ] ]; try eassumption; clear HP; [ | ].
+ eapply erasure_dist, HE; [symmetry; eassumption | now eauto with arith]. + eapply erasure_dist, HE; [symmetry; eassumption | now eauto with arith].
...@@ -277,4 +334,128 @@ Module Iris (RP RL : PCM_T) (C : CORE_LANG RP). ...@@ -277,4 +334,128 @@ Module Iris (RP RL : PCM_T) (C : CORE_LANG RP).
End ViewShifts. End ViewShifts.
Section ViewShiftProps.
Local Open Scope mask_scope.
Local Open Scope pcm_scope.
Local Open Scope bi_scope.
Local Existing Instance eqRes.
Definition mask_sing i := mask_set mask_emp i True.
Lemma vsOpen i p :
valid (vs (mask_sing i) mask_emp (inv i p) ( p)).
Proof.
intros pw nn r w _; clear r pw.
intros n r _ _ HInv w'; clear nn; intros.
do 12 red in HInv; destruct (w i) as [μ |] eqn: HLu; [| contradiction].
apply ı in HInv; rewrite (isoR p) in HInv.
(* get rid of the invisible 1/2 *)
do 8 red in HInv.
destruct k as [| k]; [now inversion HGt |].
destruct HE as [HES [rs [HE HM] ] ].
destruct (rs i) as [ri |] eqn: HLr.
- exists w' (r · ri) (erase (fdRemove i rs)); split; [reflexivity | split; [| split] ].
+ simpl; eapply HInv; [now auto with arith |].
specialize (HSub i); rewrite HLu in HSub.
eapply uni_pred, HM with i; [| exists r | | | rewrite HLr]; try reflexivity; [|].
* left; unfold mask_sing, mask_set.
destruct (Peano_dec.eq_nat_dec i i); tauto.
* symmetry; destruct (w' i); [assumption | contradiction].
+ rewrite <- assoc, (comm ri), assoc, <- (assoc _ ri), <- erase_remove, HE; assumption.
+ exists (fdRemove i rs); split; [reflexivity | intros j Hm].
destruct Hm as [| Hm]; [contradiction |]; specialize (HD j); simpl in HD.
unfold mask_sing, mask_set in HD; destruct (Peano_dec.eq_nat_dec i j);
[subst j; contradiction HD; tauto | clear HD].
rewrite fdLookup_in; setoid_rewrite (fdRemove_neq _ _ _ n0); rewrite <- fdLookup_in; now auto.
- rewrite <- fdLookup_notin_strong in HLr; contradiction HLr; clear HLr.
specialize (HSub i); rewrite HLu in HSub; clear - HM HSub.
destruct (HM i) as [HD _]; [left | rewrite HD, fdLookup_in_strong; destruct (w' i); [eexists; reflexivity | contradiction] ].
clear; unfold mask_sing, mask_set.
destruct (Peano_dec.eq_nat_dec i i); tauto.
Qed.
(* XXX: move up *)
Implicit Types (p q r : Props) (i : nat) (m : mask).
Lemma vsClose i p :
valid (vs mask_emp (mask_sing i) (inv i p * p) ).
Proof.
intros pw nn r w _; clear r pw.
intros n r _ _ [r1 [r2 [HR [HInv HP] ] ] ] w'; clear nn; intros.
do 12 red in HInv; destruct (w i) as [μ |] eqn: HLu; [| contradiction].
apply ı in HInv; rewrite (isoR p) in HInv.
(* get rid of the invisible 1/2 *)
do 8 red in HInv.
destruct k as [| k]; [now inversion HGt |].
destruct HE as [HES [rs [HE HM] ] ].
exists w' 1 (r · s); split; [reflexivity | split; [exact I |] ].
split; [erewrite pcm_op_unit, assoc, (comm rf) by apply _; assumption |].
remember (match rs i with Some ri => ri | None => 1 end) as ri eqn: EQri.
exists (fdUpdate i (ri · r) rs); split; intros.
- clear -HE EQri; destruct (rs i) as [rsi |] eqn: EQrsi; subst;
[erewrite erase_insert_old; [reflexivity | assumption] |].
erewrite pcm_op_unit, erase_insert_new; [reflexivity | assumption | apply _].
- specialize (HD i0); unfold mask_sing, mask_set in *; simpl in Hm, HD.
destruct (Peano_dec.eq_nat_dec i i0); [subst i0; clear Hm | destruct Hm as [Hm | Hm]; [contradiction |] ].
+ split; intros.
* specialize (HSub i); rewrite HLu in HSub.
rewrite !fdLookup_in_strong, fdUpdate_eq; destruct (w' i);
[intuition now eauto | contradiction].
* rewrite fdUpdate_eq in HLrs; simpl in HLrs; subst ri0.
destruct n as [| n]; [now inversion HLe |]; simpl in HP.
rewrite <- HSub; specialize (HSub i); rewrite HLu in HSub.
destruct (w' i) as [π' |]; [| contradiction]; simpl in HSub, HLw.
rewrite <- HLw, <- HSub; apply HInv; [now auto with arith |].
eapply uni_pred, HP; [now auto with arith |].
subst r; rewrite assoc; eexists; reflexivity.
+ rewrite fdLookup_in_strong, fdUpdate_neq, <- fdLookup_in_strong by assumption.
auto.
Qed.
Lemma vsTrans p q r m1 m2 m3 (HMS : m2 m1 m3) :
vs m1 m2 p q vs m2 m3 q r vs m1 m3 p r.
Proof.
intros w' n r1 [Hpq Hqr] w HSub; specialize (Hpq _ HSub); rewrite HSub in Hqr; clear w' HSub.
intros np rp HLe HS Hp w1; intros; specialize (Hpq _ _ HLe HS Hp).
edestruct Hpq as [w2 [rq [sq [HSw12 [Hq HEq] ] ] ] ]; try eassumption; [|].
{ (* XXX: possible lemma *)
clear - HD HMS.
intros j [Hmf Hm12]; apply (HD j); split; [assumption |].
destruct Hm12 as [Hm1 | Hm2]; [left; assumption | apply HMS, Hm2].
}
clear HS; assert (HS : 1 rq) by (exists rq; rewrite comm; apply pcm_op_unit, _).
rewrite <- HLe, HSub in Hqr; specialize (Hqr _ HSw12); clear Hpq HE w HSub Hp.
edestruct (Hqr k _ HLe0 HS Hq w2) as [w3 [rr [sr [HSw23 [Hr HEr] ] ] ] ];
try (reflexivity || eassumption); [|].
{ (* XXX: possible lemma *)
clear - HD HMS.
intros j [Hmf Hm23]; apply (HD j); split; [assumption |].
destruct Hm23 as [Hm2 | Hm3]; [apply HMS, Hm2 | right; assumption].
}
clear HEq Hq HS.
setoid_rewrite HSw12; eauto 6.
Qed.
(* Warning: weak statement *)
Lemma vsEnt p q m1 m2 (HEnt : p q) :
valid (vs m1 m2 p q).
Proof.
Admitted.
Lemma vsFrame p q r m1 m2 mf (HDisj : mf # m1 m2) :
vs m1 m2 p q vs (m1 mf) (m2 mf) (p * r) (q * r).
Proof.
Admitted.
Lemma vsFalse m1 m2 :
valid (vs m1 m2 ).
Proof.
intros pw nn r w _; clear r pw.
intros n r _ _ HB; contradiction.
Qed.
(* XXX missing statements: NewInv, NewGhost, GhostUpd, VSTimeless *)
End Iris. End Iris.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment