Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Ralf Jung
Iris
Commits
111318cb
Commit
111318cb
authored
7 years ago
by
Jacques-Henri Jourdan
Browse files
Options
Downloads
Patches
Plain Diff
Upred is isomorphic to some kind of monotonous SProp predicate. (WIP)
parent
8f3ebec4
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
theories/algebra/sprop.v
+61
-0
61 additions, 0 deletions
theories/algebra/sprop.v
theories/base_logic/upred_sprop.v
+66
-0
66 additions, 0 deletions
theories/base_logic/upred_sprop.v
with
127 additions
and
0 deletions
theories/algebra/sprop.v
0 → 100644
+
61
−
0
View file @
111318cb
From
iris
.
algebra
Require
Export
ofe
.
Set
Default
Proof
Using
"Type"
.
Record
sProp
:
Type
:=
SProp
{
sProp_holds
:>
nat
→
Prop
;
sProp_closed
n1
n2
:
sProp_holds
n1
→
n2
≤
n1
→
sProp_holds
n2
}
.
Add
Printing
Constructor
sProp
.
Section
cofe
.
Instance
sProp_dist
:
Dist
sProp
:=
λ
n
P
Q
,
∀
n'
,
n'
≤
n
→
P
n'
↔
Q
n'
.
Instance
sProp_equiv
:
Equiv
sProp
:=
λ
P
Q
,
∀
n
,
P
n
↔
Q
n
.
Definition
sProp_ofe_mixin
:
OfeMixin
sProp
.
Proof
.
split
.
-
intros
x
y
;
split
=>
Hxy
n
.
+
intros
n'
Hn'
.
apply
Hxy
.
+
by
apply
(
Hxy
n
)
.
-
split
.
+
by
intros
???
.
+
intros
x
y
Hxy
n'
Hn'
.
symmetry
.
by
apply
Hxy
.
+
intros
x
y
z
Hxy
Hyz
n'
Hn'
.
by
etrans
;
[
apply
Hxy
|
apply
Hyz
]
.
-
intros
n
x
y
Hxy
n'
Hn'
.
apply
Hxy
.
lia
.
Qed
.
Canonical
Structure
sPropC
:=
OfeT
sProp
sProp_ofe_mixin
.
Program
Definition
sProp_compl
:
Compl
sPropC
:=
λ
c
,
{|
sProp_holds
n
:=
c
n
n
|}
.
Next
Obligation
.
move
=>
/=
c
n1
n2
Hc
Hn
.
by
eapply
(
chain_cauchy
c
_
_
Hn
),
sProp_closed
.
Qed
.
Global
Program
Instance
sProp_cofe
:
Cofe
sPropC
:=
{|
compl
:=
sProp_compl
|}
.
Next
Obligation
.
intros
n
c
n'
Hn'
.
symmetry
.
by
apply
(
chain_cauchy
c
)
.
Qed
.
End
cofe
.
Typeclasses
Opaque
sProp_dist
sProp_equiv
.
Definition
sProp_entails
(
P
Q
:
sProp
)
:
Prop
:=
∀
n
,
P
n
→
Q
n
.
Notation
"P ⊢s Q"
:=
(
sProp_entails
P
Q
)
(
at
level
99
,
Q
at
level
200
,
right
associativity
)
:
C_scope
.
Global
Instance
sProp_entails_po
:
PreOrder
sProp_entails
.
Proof
.
split
.
-
by
intros
P
n
.
-
by
intros
P
Q
Q'
HP
HQ
n
?;
eapply
HQ
,
HP
.
Qed
.
Global
Instance
sProp_entails_anti_sym
:
AntiSymm
(
equiv
)
sProp_entails
.
Proof
.
intros
P
Q
HPQ
HQP
.
split
;
auto
.
Qed
.
Lemma
sProp_entails_lim
(
cP
cQ
:
chain
sPropC
)
:
(
∀
n
,
cP
n
⊢
s
cQ
n
)
→
compl
cP
⊢
s
compl
cQ
.
Proof
.
intros
Hlim
n
HP
.
by
apply
(
conv_compl
n
cQ
),
Hlim
,
(
conv_compl
n
cP
)
.
Qed
.
Lemma
limit_preserving_sProp_entails
`{
Cofe
A
}
(
Φ
Ψ
:
A
→
sProp
)
:
NonExpansive
Φ
→
NonExpansive
Ψ
→
LimitPreserving
(
λ
x
,
Φ
x
⊢
s
Ψ
x
)
.
Proof
.
intros
HΦ
HΨ
c
Hc
n
Hn
.
by
eapply
HΨ
,
Hc
,
HΦ
,
Hn
;
rewrite
?conv_compl
.
Qed
.
This diff is collapsed.
Click to expand it.
theories/base_logic/upred_sprop.v
0 → 100644
+
66
−
0
View file @
111318cb
From
iris
.
algebra
Require
Export
cmra
sprop
.
From
iris
.
base_logic
Require
Export
upred
.
Set
Default
Proof
Using
"Type"
.
Definition
uPred_sPropC
(
M
:
ucmraT
)
:
ofeT
:=
sigC
(
λ
P
:
M
-
n
>
sPropC
,
(
∀
x1
x2
n
,
x1
≼
{
n
}
x2
→
P
x1
n
→
P
x2
n
)
∧
(
∀
x
n
,
(
∀
n'
,
n'
≤
n
→
✓
{
n'
}
x
→
P
x
n'
)
→
P
x
n
))
.
Instance
uPred_sPropC_cofe
M
:
Cofe
(
uPred_sPropC
M
)
.
Proof
.
eapply
@
sig_cofe
,
limit_preserving_and
.
-
intros
c
Hc
x1
x2
n
Hx
Hn
.
by
eapply
(
conv_compl
_
c
),
Hc
.
-
intros
c
Hc
x
n
Hn
.
specialize
(
Hc
n
x
n
)
.
apply
(
conv_compl
n
c
),
Hc
=>
//
???
.
apply
(
conv_compl
_
c
);
auto
.
Qed
.
Program
Definition
uPred_of_sProp
{
M
:
ucmraT
}
(
P
:
uPred_sPropC
M
)
:
uPred
M
:=
{|
uPred_holds
n
x
:=
`
P
x
n
|}
.
Next
Obligation
.
move
=>
/=
M
P
/=
n
x1
x2
H
Hx
.
by
eapply
(
proj2_sig
P
)
in
Hx
.
Qed
.
Next
Obligation
.
move
=>
/=
M
P
n1
n2
x
?
Hn
?
.
by
eapply
sProp_closed
.
Qed
.
Instance
uPred_of_sProp_proper
M
:
Proper
(
equiv
==>
equiv
)
(
@
uPred_of_sProp
M
)
.
Proof
.
intros
x
y
Hxy
.
constructor
=>
n'
z
Hv
.
by
apply
Hxy
.
Qed
.
Instance
uPred_of_sProp_ne
M
:
NonExpansive
(
@
uPred_of_sProp
M
)
.
Proof
.
intros
n
x
y
Hxy
.
constructor
=>
n'
z
Hn'
Hv
.
by
apply
Hxy
.
Qed
.
Program
Definition
uPred_to_sProp
{
M
}
(
P
:
uPred
M
)
:
uPred_sPropC
M
:=
λ
ne
x
,
{|
sProp_holds
n
:=
∀
n'
,
n'
≤
n
→
✓
{
n'
}
x
→
P
n'
x
|}
.
Next
Obligation
.
move
=>
/=
M
P
x
n1
n2
HP
Hn
n'
Hn'
Hv
.
apply
HP
;
last
done
.
lia
.
Qed
.
Next
Obligation
.
move
=>
M
P
n
x1
x2
Hx
n'
Hn'
/=.
split
=>
H
n''
Hn''
Hv
.
-
eapply
uPred_mono
.
{
apply
H
;
first
done
.
eapply
cmra_validN_ne
,
Hv
.
eapply
dist_le
.
done
.
lia
.
}
exists
∅.
rewrite
right_id
.
eapply
dist_le
.
done
.
lia
.
-
eapply
uPred_mono
.
{
apply
H
;
first
done
.
eapply
cmra_validN_ne
,
Hv
.
eapply
dist_le
.
done
.
lia
.
}
exists
∅.
rewrite
right_id
.
eapply
dist_le
.
done
.
lia
.
Qed
.
Next
Obligation
.
move
=>
M
P
/=.
split
;
last
by
eauto
.
move
=>
x1
x2
n
Hx
/=
H
n'
Hn'
Hv
.
eapply
uPred_mono
,
cmra_includedN_le
,
Hn'
;
last
apply
Hx
.
by
eapply
H
,
cmra_validN_includedN
,
cmra_includedN_le
.
Qed
.
Instance
uPred_to_sProp_proper
M
:
Proper
(
equiv
==>
equiv
)
(
@
uPred_to_sProp
M
)
.
Proof
.
by
move
=>
x
y
Hxy
z
n
/=
;
split
=>
H
n'
Hn'
Hv
;
apply
Hxy
,
H
.
Qed
.
Instance
uPred_to_sProp_ne
M
:
NonExpansive
(
@
uPred_to_sProp
M
)
.
Proof
.
by
move
=>
n
x
y
Hxy
z
n'
Hn'
/=
;
split
=>
H
n''
Hn''
Hv
;
apply
Hxy
,
H
=>
//
;
lia
.
Qed
.
Lemma
uPred_of_to_sProp
M
(
P
:
uPred
M
)
:
uPred_of_sProp
(
uPred_to_sProp
P
)
≡
P
.
Proof
.
constructor
=>
n
x
Hv
;
split
=>
H
.
-
by
apply
H
.
-
intros
n'
Hn'
?
.
by
eapply
uPred_closed
.
Qed
.
Lemma
uPred_to_of_sProp
M
(
P
:
uPred_sPropC
M
)
:
uPred_to_sProp
(
uPred_of_sProp
P
)
≡
P
.
Proof
.
move
=>
x
n
/=.
unfold
uPred_holds
=>
/=
;
split
.
-
apply
(
proj2_sig
P
)
.
-
intros
.
by
eapply
sProp_closed
.
Qed
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment