Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
iris-coq
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Janno
iris-coq
Commits
f7bbaa2c
Commit
f7bbaa2c
authored
9 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Some simplifications to logic.v.
parent
230f3454
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
iris/ownership.v
+1
-1
1 addition, 1 deletion
iris/ownership.v
modures/logic.v
+11
-54
11 additions, 54 deletions
modures/logic.v
with
12 additions
and
55 deletions
iris/ownership.v
+
1
−
1
View file @
f7bbaa2c
...
...
@@ -56,7 +56,7 @@ Qed.
Lemma
ownG_valid
m
:
(
ownG
m
)
⊑
(
✓
m
)
.
Proof
.
by
rewrite
/
ownG
uPred
.
own_valid
;
apply
uPred
.
valid_mono
=>
n
[?
[]]
.
Qed
.
Lemma
ownG_valid_r
m
:
(
ownG
m
)
⊑
(
ownG
m
★
✓
m
)
.
Proof
.
apply
uPred
.
always_entails_r'
,
ownG_valid
;
by
apply
_
.
Qed
.
Proof
.
apply
(
uPred
.
always_entails_r'
_
_)
,
ownG_valid
.
Qed
.
Global
Instance
ownG_timeless
m
:
Timeless
m
→
TimelessP
(
ownG
m
)
.
Proof
.
rewrite
/
ownG
;
apply
_
.
Qed
.
...
...
This diff is collapsed.
Click to expand it.
modures/logic.v
+
11
−
54
View file @
f7bbaa2c
...
...
@@ -55,14 +55,10 @@ Proof. by intros x1 x2 Hx; apply uPred_ne', equiv_dist. Qed.
Lemma
uPred_holds_ne
{
M
}
(
P1
P2
:
uPred
M
)
n
x
:
P1
=
{
n
}
=
P2
→
✓
{
n
}
x
→
P1
n
x
→
P2
n
x
.
Proof
.
intros
HP
?
.
apply
HP
;
by
auto
.
Qed
.
Proof
.
intros
HP
?;
apply
HP
;
auto
.
Qed
.
Lemma
uPred_weaken'
{
M
}
(
P
:
uPred
M
)
x1
x2
n1
n2
:
x1
≼
x2
→
n2
≤
n1
→
✓
{
n2
}
x2
→
P
n1
x1
→
P
n2
x2
.
Proof
.
intros
;
eauto
using
uPred_weaken
.
Qed
.
Proof
.
eauto
using
uPred_weaken
.
Qed
.
(** functor *)
Program
Definition
uPred_map
{
M1
M2
:
cmraT
}
(
f
:
M2
-
n
>
M1
)
...
...
@@ -445,27 +441,14 @@ Proof. intros; apply impl_elim with Q; auto. Qed.
Lemma
impl_elim_r'
P
Q
R
:
Q
⊑
(
P
→
R
)
→
(
P
∧
Q
)
⊑
R
.
Proof
.
intros
;
apply
impl_elim
with
P
;
auto
.
Qed
.
Lemma
impl_entails
P
Q
:
True
⊑
(
P
→
Q
)
→
P
⊑
Q
.
Proof
.
intros
H
;
eapply
impl_elim
;
last
reflexivity
.
rewrite
-
H
.
by
apply
True_intro
.
Qed
.
Proof
.
intros
HPQ
;
apply
impl_elim
with
P
;
rewrite
-
?HPQ
;
auto
.
Qed
.
Lemma
entails_impl
P
Q
:
(
P
⊑
Q
)
→
True
⊑
(
P
→
Q
)
.
Proof
.
intros
H
;
apply
impl_intro_l
.
by
rewrite
-
H
and_elim_l
.
Qed
.
Proof
.
auto
using
impl_intro_l
.
Qed
.
Lemma
const_intro_l
φ
Q
R
:
φ
→
(
■
φ
∧
Q
)
⊑
R
→
Q
⊑
R
.
Proof
.
intros
?
<-.
apply
and_intro
;
last
done
.
by
apply
const_intro
.
Qed
.
Lemma
const_intro_l
φ
Q
R
:
φ
→
(
■
φ
∧
Q
)
⊑
R
→
Q
⊑
R
.
Proof
.
intros
?
<-
;
auto
using
const_intro
.
Qed
.
Lemma
const_intro_r
φ
Q
R
:
φ
→
(
Q
∧
■
φ
)
⊑
R
→
Q
⊑
R
.
Proof
.
(* FIXME RJ: Why does this not work? rewrite (commutative uPred_and Q (■φ)%I). *)
intros
?
<-.
apply
and_intro
;
first
done
.
by
apply
const_intro
.
Qed
.
Proof
.
intros
?
<-
;
auto
using
const_intro
.
Qed
.
Lemma
const_elim_l
φ
Q
R
:
(
φ
→
Q
⊑
R
)
→
(
■
φ
∧
Q
)
⊑
R
.
Proof
.
intros
;
apply
const_elim
with
φ
;
eauto
.
Qed
.
Lemma
const_elim_r
φ
Q
R
:
(
φ
→
Q
⊑
R
)
→
(
Q
∧
■
φ
)
⊑
R
.
...
...
@@ -617,15 +600,9 @@ Lemma sep_elim_r' P Q R : Q ⊑ R → (P ★ Q) ⊑ R.
Proof
.
intros
->
;
apply
sep_elim_r
.
Qed
.
Hint
Resolve
sep_elim_l'
sep_elim_r'
.
Lemma
sep_intro_True_l
P
Q
R
:
True
⊑
P
→
R
⊑
Q
→
R
⊑
(
P
★
Q
)
.
Proof
.
intros
HP
HQ
.
etransitivity
;
last
(
eapply
sep_mono
;
eassumption
)
.
by
rewrite
left_id
.
Qed
.
Proof
.
by
intros
;
rewrite
-
(
left_id
True
%
I
uPred_sep
R
);
apply
sep_mono
.
Qed
.
Lemma
sep_intro_True_r
P
Q
R
:
R
⊑
P
→
True
⊑
Q
→
R
⊑
(
P
★
Q
)
.
Proof
.
intros
HP
HQ
.
etransitivity
;
last
(
eapply
sep_mono
;
eassumption
)
.
by
rewrite
right_id
.
Qed
.
Proof
.
by
intros
;
rewrite
-
(
right_id
True
%
I
uPred_sep
R
);
apply
sep_mono
.
Qed
.
Lemma
wand_intro_l
P
Q
R
:
(
Q
★
P
)
⊑
R
→
P
⊑
(
Q
-★
R
)
.
Proof
.
rewrite
(
commutative
_);
apply
wand_intro_r
.
Qed
.
Lemma
wand_elim_r
P
Q
:
(
P
★
(
P
-★
Q
))
⊑
Q
.
...
...
@@ -787,26 +764,10 @@ Proof.
apply
always_intro
,
impl_intro_r
.
by
rewrite
always_and_sep_l
always_elim
wand_elim_l
.
Qed
.
Lemma
always_impl_l
P
Q
:
(
P
→
□
Q
)
⊑
(
P
→
□
Q
★
P
)
.
Proof
.
rewrite
-
always_and_sep_l
.
apply
impl_intro_l
,
and_intro
.
-
by
rewrite
impl_elim_r
.
-
by
rewrite
and_elim_l
.
Qed
.
Lemma
always_impl_r
P
Q
:
(
P
→
□
Q
)
⊑
(
P
→
P
★
□
Q
)
.
Proof
.
by
rewrite
commutative
always_impl_l
.
Qed
.
Lemma
always_entails_l
P
Q
:
(
P
⊑
□
Q
)
→
P
⊑
(
□
Q
★
P
)
.
Proof
.
intros
H
.
apply
impl_entails
.
rewrite
-
always_impl_l
.
by
apply
entails_impl
.
Qed
.
Proof
.
intros
;
rewrite
-
always_and_sep_l
;
auto
.
Qed
.
Lemma
always_entails_r
P
Q
:
(
P
⊑
□
Q
)
→
P
⊑
(
P
★
□
Q
)
.
Proof
.
intros
H
.
apply
impl_entails
.
rewrite
-
always_impl_r
.
by
apply
entails_impl
.
Qed
.
Proof
.
intros
;
rewrite
-
always_and_sep_r
;
auto
.
Qed
.
(* Own *)
Lemma
own_op
(
a1
a2
:
M
)
:
...
...
@@ -979,10 +940,6 @@ Lemma always_and_sep_r' P Q `{!AlwaysStable Q} : (P ∧ Q)%I ≡ (P ★ Q)%I.
Proof
.
by
rewrite
-
(
always_always
Q
)
always_and_sep_r
.
Qed
.
Lemma
always_sep_dup'
P
`{
!
AlwaysStable
P
}
:
P
≡
(
P
★
P
)
%
I
.
Proof
.
by
rewrite
-
(
always_always
P
)
-
always_sep_dup
.
Qed
.
Lemma
always_impl_l'
P
Q
`{
!
AlwaysStable
Q
}
:
(
P
→
Q
)
⊑
(
P
→
Q
★
P
)
.
Proof
.
by
rewrite
-
(
always_always
Q
)
always_impl_l
.
Qed
.
Lemma
always_impl_r'
P
Q
`{
!
AlwaysStable
Q
}
:
(
P
→
Q
)
⊑
(
P
→
P
★
Q
)
.
Proof
.
by
rewrite
-
(
always_always
Q
)
always_impl_r
.
Qed
.
Lemma
always_entails_l'
P
Q
`{
!
AlwaysStable
Q
}
:
(
P
⊑
Q
)
→
P
⊑
(
Q
★
P
)
.
Proof
.
by
rewrite
-
(
always_always
Q
);
apply
always_entails_l
.
Qed
.
Lemma
always_entails_r'
P
Q
`{
!
AlwaysStable
Q
}
:
(
P
⊑
Q
)
→
P
⊑
(
P
★
Q
)
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment