Skip to content
Snippets Groups Projects
Commit b7d31005 authored by Ralf Jung's avatar Ralf Jung
Browse files

algebra: prove some frame-preserving updates from empty

parent 23c54a27
No related branches found
No related tags found
No related merge requests found
...@@ -396,16 +396,27 @@ End cmra_monotone. ...@@ -396,16 +396,27 @@ End cmra_monotone.
(** * Transporting a CMRA equality *) (** * Transporting a CMRA equality *)
Definition cmra_transport {A B : cmraT} (H : A = B) (x : A) : B := Definition cmra_transport {A B : cmraT} (H : A = B) (x : A) : B :=
eq_rect A id x _ H. eq_rect A id x _ H.
Definition cmra_transport_back {A B : cmraT} (H : A = B) (x : B) : A :=
eq_rect B id x _ (eq_sym H).
Section cmra_transport. Section cmra_transport.
Context {A B : cmraT} (H : A = B). Context {A B : cmraT} (H : A = B).
Notation T := (cmra_transport H). Notation T := (cmra_transport H).
Notation T' := (cmra_transport_back H).
Global Instance cmra_transport_ne n : Proper (dist n ==> dist n) T. Global Instance cmra_transport_ne n : Proper (dist n ==> dist n) T.
Proof. by intros ???; destruct H. Qed. Proof. by intros ???; destruct H. Qed.
Global Instance cmra_transport_proper : Proper (() ==> ()) T. Global Instance cmra_transport_proper : Proper (() ==> ()) T.
Proof. by intros ???; destruct H. Qed. Proof. by intros ???; destruct H. Qed.
Lemma cmra_transport_and_back x : T' (T x) = x.
Proof. by destruct H. Qed.
Lemma cmra_transport_back_and x : T (T' x) = x.
Proof. by destruct H. Qed.
Lemma cmra_transport_op x y : T (x y) = T x T y. Lemma cmra_transport_op x y : T (x y) = T x T y.
Proof. by destruct H. Qed. Proof. by destruct H. Qed.
Lemma cmra_transport_back_op_r y x : T (x T' y) = T x y.
Proof. by destruct H. Qed.
Lemma cmra_transport_back_op_l y x : T (T' x y) = x T y.
Proof. by destruct H. Qed.
Lemma cmra_transport_unit x : T (unit x) = unit (T x). Lemma cmra_transport_unit x : T (unit x) = unit (T x).
Proof. by destruct H. Qed. Proof. by destruct H. Qed.
Lemma cmra_transport_validN n x : {n} (T x) {n} x. Lemma cmra_transport_validN n x : {n} (T x) {n} x.
......
...@@ -228,11 +228,31 @@ Lemma map_singleton_updateP (P : A → Prop) (Q : gmap K A → Prop) i x : ...@@ -228,11 +228,31 @@ Lemma map_singleton_updateP (P : A → Prop) (Q : gmap K A → Prop) i x :
x ~~>: P ( y, P y Q {[ i y ]}) {[ i x ]} ~~>: Q. x ~~>: P ( y, P y Q {[ i y ]}) {[ i x ]} ~~>: Q.
Proof. apply map_insert_updateP. Qed. Proof. apply map_insert_updateP. Qed.
Lemma map_singleton_updateP' (P : A Prop) i x : Lemma map_singleton_updateP' (P : A Prop) i x :
x ~~>: P {[ i x ]} ~~>: λ m', y, m' = {[ i y ]} P y. x ~~>: P {[ i x ]} ~~>: λ m, y, m = {[ i y ]} P y.
Proof. apply map_insert_updateP'. Qed. Proof. apply map_insert_updateP'. Qed.
Lemma map_singleton_update i (x y : A) : x ~~> y {[ i x ]} ~~> {[ i y ]}. Lemma map_singleton_update i (x y : A) : x ~~> y {[ i x ]} ~~> {[ i y ]}.
Proof. apply map_insert_update. Qed. Proof. apply map_insert_update. Qed.
Lemma map_singleton_updateP_empty `{Empty A, !CMRAIdentity A}
(P : A Prop) (Q : gmap K A Prop) i :
~~>: P ( y, P y Q {[ i y ]}) ~~>: Q.
Proof.
intros Hx HQ gf n Hg.
destruct (Hx (default (gf !! i) id) n) as (y&?&Hy).
{ move:(Hg i). rewrite !left_id. case _: (gf !! i); first done.
intros. apply cmra_empty_valid. }
exists {[ i y]}. split; first by apply HQ.
intros i'. rewrite lookup_op.
destruct (decide (i' = i)).
- subst i'. rewrite lookup_singleton. move:Hy.
case _: (gf !! i); first done.
by rewrite right_id.
- move:(Hg i'). rewrite lookup_singleton_ne // !left_id. done.
Qed.
Lemma map_singleton_updateP_empty' `{Empty A, !CMRAIdentity A} (P : A Prop) i :
~~>: P ~~>: λ m, y, m = {[ i y ]} P y.
Proof. eauto using map_singleton_updateP_empty. Qed.
Context `{Fresh K (gset K), !FreshSpec K (gset K)}. Context `{Fresh K (gset K), !FreshSpec K (gset K)}.
Lemma map_updateP_alloc (Q : gmap K A Prop) m x : Lemma map_updateP_alloc (Q : gmap K A Prop) m x :
x ( i, m !! i = None Q (<[i:=x]>m)) m ~~>: Q. x ( i, m !! i = None Q (<[i:=x]>m)) m ~~>: Q.
......
...@@ -48,7 +48,7 @@ Section iprod_cofe. ...@@ -48,7 +48,7 @@ Section iprod_cofe.
Section empty. Section empty.
Context `{ x, Empty (B x)}. Context `{ x, Empty (B x)}.
Definition iprod_lookup_empty x : x = := eq_refl. Definition iprod_lookup_empty x : x = := eq_refl.
Instance iprod_empty_timeless : Global Instance iprod_empty_timeless :
( x : A, Timeless ( : B x)) Timeless ( : iprod B). ( x : A, Timeless ( : B x)) Timeless ( : iprod B).
Proof. intros ? f Hf x. by apply (timeless _). Qed. Proof. intros ? f Hf x. by apply (timeless _). Qed.
End empty. End empty.
...@@ -168,7 +168,7 @@ Section iprod_cmra. ...@@ -168,7 +168,7 @@ Section iprod_cmra.
intros ?; split. intros ?; split.
* intros n x; apply cmra_empty_valid. * intros n x; apply cmra_empty_valid.
* by intros f x; rewrite iprod_lookup_op left_id. * by intros f x; rewrite iprod_lookup_op left_id.
* by intros f Hf x; apply (timeless _). * by apply _.
Qed. Qed.
(** Properties of iprod_insert. *) (** Properties of iprod_insert. *)
...@@ -230,7 +230,7 @@ Section iprod_cmra. ...@@ -230,7 +230,7 @@ Section iprod_cmra.
Proof. rewrite /iprod_singleton; eauto using iprod_insert_updateP. Qed. Proof. rewrite /iprod_singleton; eauto using iprod_insert_updateP. Qed.
Lemma iprod_singleton_updateP' x (P : B x Prop) y1 : Lemma iprod_singleton_updateP' x (P : B x Prop) y1 :
y1 ~~>: P y1 ~~>: P
iprod_singleton x y1 ~~>: λ g', y2, g' = iprod_singleton x y2 P y2. iprod_singleton x y1 ~~>: λ g, y2, g = iprod_singleton x y2 P y2.
Proof. eauto using iprod_singleton_updateP. Qed. Proof. eauto using iprod_singleton_updateP. Qed.
Lemma iprod_singleton_update x y1 y2 : Lemma iprod_singleton_update x y1 y2 :
y1 ~~> y2 iprod_singleton x y1 ~~> iprod_singleton x y2. y1 ~~> y2 iprod_singleton x y1 ~~> iprod_singleton x y2.
...@@ -245,6 +245,9 @@ Section iprod_cmra. ...@@ -245,6 +245,9 @@ Section iprod_cmra.
* by rewrite iprod_lookup_op iprod_lookup_singleton. * by rewrite iprod_lookup_op iprod_lookup_singleton.
* rewrite iprod_lookup_op iprod_lookup_singleton_ne //. apply Hg. * rewrite iprod_lookup_op iprod_lookup_singleton_ne //. apply Hg.
Qed. Qed.
Lemma iprod_singleton_updateP_empty' x (P : B x Prop) :
~~>: P ~~>: λ g, y2, g = iprod_singleton x y2 P y2.
Proof. eauto using iprod_singleton_updateP_empty. Qed.
End iprod_cmra. End iprod_cmra.
Arguments iprodRA {_} _. Arguments iprodRA {_} _.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment