Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
iris-coq
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Janno
iris-coq
Commits
ae4262a1
Commit
ae4262a1
authored
9 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Clean up names in excl.
parent
24314cda
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
algebra/excl.v
+27
-29
27 additions, 29 deletions
algebra/excl.v
program_logic/wsat.v
+1
-1
1 addition, 1 deletion
program_logic/wsat.v
with
28 additions
and
30 deletions
algebra/excl.v
+
27
−
29
View file @
ae4262a1
...
@@ -15,15 +15,17 @@ Instance maybe_Excl {A} : Maybe (@Excl A) := λ x,
...
@@ -15,15 +15,17 @@ Instance maybe_Excl {A} : Maybe (@Excl A) := λ x,
Section
excl
.
Section
excl
.
Context
{
A
:
cofeT
}
.
Context
{
A
:
cofeT
}
.
Implicit
Types
a
b
:
A
.
Implicit
Types
x
y
:
excl
A
.
(* Cofe *)
(* Cofe *)
Inductive
excl_equiv
:
Equiv
(
excl
A
)
:=
Inductive
excl_equiv
:
Equiv
(
excl
A
)
:=
|
Excl_equiv
(
x
y
:
A
)
:
x
≡
y
→
Excl
x
≡
Excl
y
|
Excl_equiv
a
b
:
a
≡
b
→
Excl
a
≡
Excl
b
|
ExclUnit_equiv
:
ExclUnit
≡
ExclUnit
|
ExclUnit_equiv
:
ExclUnit
≡
ExclUnit
|
ExclBot_equiv
:
ExclBot
≡
ExclBot
.
|
ExclBot_equiv
:
ExclBot
≡
ExclBot
.
Existing
Instance
excl_equiv
.
Existing
Instance
excl_equiv
.
Inductive
excl_dist
:
Dist
(
excl
A
)
:=
Inductive
excl_dist
:
Dist
(
excl
A
)
:=
|
Excl_dist
(
x
y
:
A
)
n
:
x
≡
{
n
}
≡
y
→
Excl
x
≡
{
n
}
≡
Excl
y
|
Excl_dist
a
b
n
:
a
≡
{
n
}
≡
b
→
Excl
a
≡
{
n
}
≡
Excl
b
|
ExclUnit_dist
n
:
ExclUnit
≡
{
n
}
≡
ExclUnit
|
ExclUnit_dist
n
:
ExclUnit
≡
{
n
}
≡
ExclUnit
|
ExclBot_dist
n
:
ExclBot
≡
{
n
}
≡
ExclBot
.
|
ExclBot_dist
n
:
ExclBot
≡
{
n
}
≡
ExclBot
.
Existing
Instance
excl_dist
.
Existing
Instance
excl_dist
.
...
@@ -38,35 +40,35 @@ Global Instance Excl_dist_inj n : Inj (dist n) (dist n) (@Excl A).
...
@@ -38,35 +40,35 @@ Global Instance Excl_dist_inj n : Inj (dist n) (dist n) (@Excl A).
Proof
.
by
inversion_clear
1
.
Qed
.
Proof
.
by
inversion_clear
1
.
Qed
.
Program
Definition
excl_chain
Program
Definition
excl_chain
(
c
:
chain
(
excl
A
))
(
x
:
A
)
(
H
:
maybe
Excl
(
c
1
)
=
Some
x
)
:
chain
A
:=
(
c
:
chain
(
excl
A
))
(
a
:
A
)
(
H
:
maybe
Excl
(
c
1
)
=
Some
a
)
:
chain
A
:=
{|
chain_car
n
:=
match
c
n
return
_
with
Excl
y
=>
y
|
_
=>
x
end
|}
.
{|
chain_car
n
:=
match
c
n
return
_
with
Excl
y
=>
y
|
_
=>
a
end
|}
.
Next
Obligation
.
Next
Obligation
.
intros
c
x
?
n
[|
i
]
?;
[
omega
|];
simpl
.
intros
c
a
?
n
[|
i
]
?;
[
omega
|];
simpl
.
destruct
(
c
1
)
eqn
:?;
simplify_eq
/=.
destruct
(
c
1
)
eqn
:?;
simplify_eq
/=.
by
feed
inversion
(
chain_cauchy
c
n
(
S
i
))
.
by
feed
inversion
(
chain_cauchy
c
n
(
S
i
))
.
Qed
.
Qed
.
Instance
excl_compl
:
Compl
(
excl
A
)
:=
λ
c
,
Instance
excl_compl
:
Compl
(
excl
A
)
:=
λ
c
,
match
Some_dec
(
maybe
Excl
(
c
1
))
with
match
Some_dec
(
maybe
Excl
(
c
1
))
with
|
inleft
(
exist
x
H
)
=>
Excl
(
compl
(
excl_chain
c
x
H
))
|
inright
_
=>
c
1
|
inleft
(
exist
a
H
)
=>
Excl
(
compl
(
excl_chain
c
a
H
))
|
inright
_
=>
c
1
end
.
end
.
Definition
excl_cofe_mixin
:
CofeMixin
(
excl
A
)
.
Definition
excl_cofe_mixin
:
CofeMixin
(
excl
A
)
.
Proof
.
Proof
.
split
.
split
.
-
intros
m
x
m
y
;
split
;
[
by
destruct
1
;
constructor
;
apply
equiv_dist
|]
.
-
intros
x
y
;
split
;
[
by
destruct
1
;
constructor
;
apply
equiv_dist
|]
.
intros
Hxy
;
feed
inversion
(
Hxy
1
);
subst
;
constructor
;
apply
equiv_dist
.
intros
Hxy
;
feed
inversion
(
Hxy
1
);
subst
;
constructor
;
apply
equiv_dist
.
by
intros
n
;
feed
inversion
(
Hxy
n
)
.
by
intros
n
;
feed
inversion
(
Hxy
n
)
.
-
intros
n
;
split
.
-
intros
n
;
split
.
+
by
intros
[
x
|
|
];
constructor
.
+
by
intros
[];
constructor
.
+
by
destruct
1
;
constructor
.
+
by
destruct
1
;
constructor
.
+
destruct
1
;
inversion_clear
1
;
constructor
;
etrans
;
eauto
.
+
destruct
1
;
inversion_clear
1
;
constructor
;
etrans
;
eauto
.
-
by
inversion_clear
1
;
constructor
;
apply
dist_S
.
-
by
inversion_clear
1
;
constructor
;
apply
dist_S
.
-
intros
n
c
;
unfold
compl
,
excl_compl
.
-
intros
n
c
;
unfold
compl
,
excl_compl
.
destruct
(
Some_dec
(
maybe
Excl
(
c
1
)))
as
[[
x
H
x
]|]
.
destruct
(
Some_dec
(
maybe
Excl
(
c
1
)))
as
[[
a
H
a
]|]
.
{
assert
(
c
1
=
Excl
x
)
by
(
by
destruct
(
c
1
);
simplify_eq
/=
)
.
{
assert
(
c
1
=
Excl
a
)
by
(
by
destruct
(
c
1
);
simplify_eq
/=
)
.
assert
(
∃
y
,
c
(
S
n
)
=
Excl
y
)
as
[
y
H
y
]
.
assert
(
∃
b
,
c
(
S
n
)
=
Excl
b
)
as
[
b
H
b
]
.
{
feed
inversion
(
chain_cauchy
c
0
(
S
n
));
eauto
with
lia
congruence
.
}
{
feed
inversion
(
chain_cauchy
c
0
(
S
n
));
eauto
with
lia
congruence
.
}
rewrite
H
y
;
constructor
.
rewrite
H
b
;
constructor
.
by
rewrite
(
conv_compl
n
(
excl_chain
c
x
H
x
))
/=
H
y
.
}
by
rewrite
(
conv_compl
n
(
excl_chain
c
a
H
a
))
/=
H
b
.
}
feed
inversion
(
chain_cauchy
c
0
(
S
n
));
first
lia
;
feed
inversion
(
chain_cauchy
c
0
(
S
n
));
first
lia
;
constructor
;
destruct
(
c
1
);
simplify_eq
/=.
constructor
;
destruct
(
c
1
);
simplify_eq
/=.
Qed
.
Qed
.
...
@@ -76,7 +78,7 @@ Proof. by inversion_clear 2; constructor; apply (timeless _). Qed.
...
@@ -76,7 +78,7 @@ Proof. by inversion_clear 2; constructor; apply (timeless _). Qed.
Global
Instance
excl_leibniz
:
LeibnizEquiv
A
→
LeibnizEquiv
(
excl
A
)
.
Global
Instance
excl_leibniz
:
LeibnizEquiv
A
→
LeibnizEquiv
(
excl
A
)
.
Proof
.
by
destruct
2
;
f_equal
;
apply
leibniz_equiv
.
Qed
.
Proof
.
by
destruct
2
;
f_equal
;
apply
leibniz_equiv
.
Qed
.
Global
Instance
Excl_timeless
(
x
:
A
)
:
Timeless
x
→
Timeless
(
Excl
x
)
.
Global
Instance
Excl_timeless
a
:
Timeless
a
→
Timeless
(
Excl
a
)
.
Proof
.
by
inversion_clear
2
;
constructor
;
apply
(
timeless
_)
.
Qed
.
Proof
.
by
inversion_clear
2
;
constructor
;
apply
(
timeless
_)
.
Qed
.
Global
Instance
ExclUnit_timeless
:
Timeless
(
@
ExclUnit
A
)
.
Global
Instance
ExclUnit_timeless
:
Timeless
(
@
ExclUnit
A
)
.
Proof
.
by
inversion_clear
1
;
constructor
.
Qed
.
Proof
.
by
inversion_clear
1
;
constructor
.
Qed
.
...
@@ -92,7 +94,7 @@ Global Instance excl_empty : Empty (excl A) := ExclUnit.
...
@@ -92,7 +94,7 @@ Global Instance excl_empty : Empty (excl A) := ExclUnit.
Instance
excl_unit
:
Unit
(
excl
A
)
:=
λ
_,
∅.
Instance
excl_unit
:
Unit
(
excl
A
)
:=
λ
_,
∅.
Instance
excl_op
:
Op
(
excl
A
)
:=
λ
x
y
,
Instance
excl_op
:
Op
(
excl
A
)
:=
λ
x
y
,
match
x
,
y
with
match
x
,
y
with
|
Excl
x
,
ExclUnit
|
ExclUnit
,
Excl
x
=>
Excl
x
|
Excl
a
,
ExclUnit
|
ExclUnit
,
Excl
a
=>
Excl
a
|
ExclUnit
,
ExclUnit
=>
ExclUnit
|
ExclUnit
,
ExclUnit
=>
ExclUnit
|
_,
_=>
ExclBot
|
_,
_=>
ExclBot
end
.
end
.
...
@@ -131,14 +133,14 @@ Proof. split. done. by intros []. apply _. Qed.
...
@@ -131,14 +133,14 @@ Proof. split. done. by intros []. apply _. Qed.
Global
Instance
excl_cmra_discrete
:
Discrete
A
→
CMRADiscrete
exclRA
.
Global
Instance
excl_cmra_discrete
:
Discrete
A
→
CMRADiscrete
exclRA
.
Proof
.
split
.
apply
_
.
by
intros
[]
.
Qed
.
Proof
.
split
.
apply
_
.
by
intros
[]
.
Qed
.
Lemma
excl_validN_inv_l
n
x
y
:
✓
{
n
}
(
Excl
x
⋅
y
)
→
y
=
∅.
Lemma
excl_validN_inv_l
n
x
a
:
✓
{
n
}
(
Excl
a
⋅
x
)
→
x
=
∅.
Proof
.
by
destruct
y
.
Qed
.
Lemma
excl_validN_inv_r
n
x
y
:
✓
{
n
}
(
x
⋅
Excl
y
)
→
x
=
∅.
Proof
.
by
destruct
x
.
Qed
.
Proof
.
by
destruct
x
.
Qed
.
Lemma
Excl_includedN
n
x
y
:
✓
{
n
}
y
→
Excl
x
≼
{
n
}
y
↔
y
≡
{
n
}
≡
Excl
x
.
Lemma
excl_validN_inv_r
n
x
a
:
✓
{
n
}
(
x
⋅
Excl
a
)
→
x
=
∅.
Proof
.
by
destruct
x
.
Qed
.
Lemma
Excl_includedN
n
a
x
:
✓
{
n
}
x
→
Excl
a
≼
{
n
}
x
↔
x
≡
{
n
}
≡
Excl
a
.
Proof
.
Proof
.
intros
Hvalid
;
split
;
[|
by
intros
->
]
.
intros
Hvalid
;
split
;
[|
by
intros
->
]
.
by
intros
[
z
?];
cofe_subst
;
rewrite
(
excl_validN_inv_l
n
x
z
)
.
intros
[
z
?];
cofe_subst
.
by
rewrite
(
excl_validN_inv_l
n
z
a
)
.
Qed
.
Qed
.
(** Internalized properties *)
(** Internalized properties *)
...
@@ -156,18 +158,14 @@ Lemma excl_validI {M} (x : excl A) :
...
@@ -156,18 +158,14 @@ Lemma excl_validI {M} (x : excl A) :
Proof
.
uPred
.
unseal
.
by
destruct
x
.
Qed
.
Proof
.
uPred
.
unseal
.
by
destruct
x
.
Qed
.
(** ** Local updates *)
(** ** Local updates *)
Global
Instance
excl_local_update
b
:
Global
Instance
excl_local_update
y
:
LocalUpdate
(
λ
a
,
if
a
is
Excl
_
then
True
else
False
)
(
λ
_,
Excl
b
)
.
LocalUpdate
(
λ
x
,
if
x
is
Excl
_
then
✓
y
else
False
)
(
λ
_,
y
)
.
Proof
.
split
.
by
intros
n
y1
y2
Hy
.
by
intros
n
[
a
|
|]
[
b'
|
|]
.
Qed
.
Proof
.
split
.
apply
_
.
by
destruct
y
;
intros
n
[
a
|
|]
[
b'
|
|]
.
Qed
.
Global
Instance
excl_local_update_del
:
LocalUpdate
(
λ
a
,
if
a
is
Excl
_
then
True
else
False
)
(
λ
_,
ExclUnit
)
.
Proof
.
split
.
by
intros
n
y1
y2
Hy
.
by
intros
n
[
a
|
|]
[
b'
|
|]
.
Qed
.
(** Updates *)
(** Updates *)
Lemma
excl_update
(
x
:
A
)
y
:
✓
y
→
Excl
x
~~>
y
.
Lemma
excl_update
a
y
:
✓
y
→
Excl
a
~~>
y
.
Proof
.
destruct
y
;
by
intros
??
[?|
|]
.
Qed
.
Proof
.
destruct
y
;
by
intros
??
[?|
|]
.
Qed
.
Lemma
excl_updateP
(
P
:
excl
A
→
Prop
)
x
y
:
✓
y
→
P
y
→
Excl
x
~~>:
P
.
Lemma
excl_updateP
(
P
:
excl
A
→
Prop
)
a
y
:
✓
y
→
P
y
→
Excl
a
~~>:
P
.
Proof
.
intros
??
n
z
?;
exists
y
.
by
destruct
y
,
z
as
[?|
|]
.
Qed
.
Proof
.
intros
??
n
z
?;
exists
y
.
by
destruct
y
,
z
as
[?|
|]
.
Qed
.
End
excl
.
End
excl
.
...
...
This diff is collapsed.
Click to expand it.
program_logic/wsat.v
+
1
−
1
View file @
ae4262a1
...
@@ -117,7 +117,7 @@ Lemma wsat_update_pst n E σ1 σ1' r rf :
...
@@ -117,7 +117,7 @@ Lemma wsat_update_pst n E σ1 σ1' r rf :
Proof
.
Proof
.
intros
Hpst_r
[
rs
[(?
&
?
&
?)
Hpst
HE
Hwld
]];
simpl
in
*.
intros
Hpst_r
[
rs
[(?
&
?
&
?)
Hpst
HE
Hwld
]];
simpl
in
*.
assert
(
pst
rf
⋅
pst
(
big_opM
rs
)
=
∅
)
as
Hpst'
.
assert
(
pst
rf
⋅
pst
(
big_opM
rs
)
=
∅
)
as
Hpst'
.
{
by
apply
:
(
excl_validN_inv_l
(
S
n
)
σ1
);
rewrite
-
Hpst_r
assoc
.
}
{
by
apply
:
(
excl_validN_inv_l
(
S
n
)
_
σ1
);
rewrite
-
Hpst_r
assoc
.
}
assert
(
σ1'
=
σ1
)
as
->
.
assert
(
σ1'
=
σ1
)
as
->
.
{
apply
leibniz_equiv
,
(
timeless
_),
dist_le
with
(
S
n
);
auto
.
{
apply
leibniz_equiv
,
(
timeless
_),
dist_le
with
(
S
n
);
auto
.
apply
(
inj
Excl
)
.
apply
(
inj
Excl
)
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment