Skip to content
Snippets Groups Projects
Commit 82511560 authored by Ralf Jung's avatar Ralf Jung
Browse files

show that we always own something

parent 79d2785b
No related branches found
No related tags found
No related merge requests found
......@@ -786,7 +786,7 @@ Proof. intros; rewrite -always_and_sep_l; auto. Qed.
Lemma always_entails_r P Q : (P Q) P (P Q).
Proof. intros; rewrite -always_and_sep_r; auto. Qed.
(* Own *)
(* Own and valid *)
Lemma own_op (a1 a2 : M) :
uPred_own (a1 a2) (uPred_own a1 uPred_own a2)%I.
Proof.
......@@ -805,6 +805,8 @@ Proof.
Qed.
Lemma always_own (a : M) : unit a a ( uPred_own a)%I uPred_own a.
Proof. by intros <-; rewrite always_own_unit. Qed.
Lemma own_something : True a, uPred_own a.
Proof. intros x [|n] ??; [done|]. by exists x; simpl. Qed.
Lemma own_empty `{Empty M, !CMRAIdentity M} : True uPred_own ∅.
Proof. intros x [|n] ??; [done|]. by exists x; rewrite (left_id _ _). Qed.
Lemma own_valid (a : M) : uPred_own a ( a).
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment