Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
iris-coq
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Janno
iris-coq
Commits
5704668c
Commit
5704668c
authored
9 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
More results on big conjunction and big separating conjunction.
parent
7fe3cfc4
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
modures/logic.v
+43
-0
43 additions, 0 deletions
modures/logic.v
with
43 additions
and
0 deletions
modures/logic.v
+
43
−
0
View file @
5704668c
...
...
@@ -204,14 +204,19 @@ Infix "↔" := uPred_iff : uPred_scope.
Fixpoint
uPred_big_and
{
M
}
(
Ps
:
list
(
uPred
M
))
:=
match
Ps
with
[]
=>
True
|
P
::
Ps
=>
P
∧
uPred_big_and
Ps
end
%
I
.
Instance
:
Params
(
@
uPred_big_and
)
1
.
Notation
"'Π∧' Ps"
:=
(
uPred_big_and
Ps
)
(
at
level
20
)
:
uPred_scope
.
Fixpoint
uPred_big_sep
{
M
}
(
Ps
:
list
(
uPred
M
))
:=
match
Ps
with
[]
=>
True
|
P
::
Ps
=>
P
★
uPred_big_sep
Ps
end
%
I
.
Instance
:
Params
(
@
uPred_big_sep
)
1
.
Notation
"'Π★' Ps"
:=
(
uPred_big_sep
Ps
)
(
at
level
20
)
:
uPred_scope
.
Class
TimelessP
{
M
}
(
P
:
uPred
M
)
:=
timelessP
x
n
:
✓
{
1
}
x
→
P
1
x
→
P
n
x
.
Module
uPred
.
Section
uPred_logic
.
Context
{
M
:
cmraT
}
.
Implicit
Types
P
Q
:
uPred
M
.
Implicit
Types
Ps
Qs
:
list
(
uPred
M
)
.
Implicit
Types
A
:
Type
.
Global
Instance
:
PreOrder
((
⊆
)
:
relation
(
uPred
M
))
.
...
...
@@ -652,6 +657,8 @@ Proof.
{
intros
n
;
solve_proper
.
}
rewrite
<-
(
eq_refl
_
True
),
always_const
;
auto
.
Qed
.
Lemma
always_and_sep_r
P
Q
:
(
P
∧
□
Q
)
%
I
⊆
(
P
★
□
Q
)
%
I
.
Proof
.
rewrite
!
(
commutative
_
P
);
apply
always_and_sep_l
.
Qed
.
Lemma
always_sep
P
Q
:
(
□
(
P
★
Q
))
%
I
≡
(
□
P
★
□
Q
)
%
I
.
Proof
.
apply
(
anti_symmetric
(
⊆
))
.
...
...
@@ -706,6 +713,42 @@ Proof.
apply
(
valid_timeless
_),
cmra_valid_le
with
(
S
n
);
auto
with
lia
.
Qed
.
(* Big ops *)
Global
Instance
uPred_big_and_proper
:
Proper
((
≡
)
==>
(
≡
))
(
@
uPred_big_and
M
)
.
Proof
.
by
induction
1
as
[|
P
Q
Ps
Qs
HPQ
?
IH
];
simpl
;
rewrite
?HPQ
,
?IH
.
Qed
.
Global
Instance
uPred_big_sep_proper
:
Proper
((
≡
)
==>
(
≡
))
(
@
uPred_big_sep
M
)
.
Proof
.
by
induction
1
as
[|
P
Q
Ps
Qs
HPQ
?
IH
];
simpl
;
rewrite
?HPQ
,
?IH
.
Qed
.
Global
Instance
uPred_big_and_perm
:
Proper
((
≡
ₚ
)
==>
(
≡
))
(
@
uPred_big_and
M
)
.
Proof
.
induction
1
as
[|
P
Ps
Qs
?
IH
|
P
Q
Ps
|];
simpl
;
auto
.
*
by
rewrite
IH
.
*
by
rewrite
!
(
associative
_),
(
commutative
_
P
)
.
*
etransitivity
;
eauto
.
Qed
.
Global
Instance
uPred_big_sep_perm
:
Proper
((
≡
ₚ
)
==>
(
≡
))
(
@
uPred_big_sep
M
)
.
Proof
.
induction
1
as
[|
P
Ps
Qs
?
IH
|
P
Q
Ps
|];
simpl
;
auto
.
*
by
rewrite
IH
.
*
by
rewrite
!
(
associative
_),
(
commutative
_
P
)
.
*
etransitivity
;
eauto
.
Qed
.
Lemma
uPred_big_and_app
Ps
Qs
:
(
Π
∧
(
Ps
++
Qs
))
%
I
≡
(
Π
∧
Ps
∧
Π
∧
Qs
)
%
I
.
Proof
.
by
induction
Ps
as
[|
P
Ps
IH
];
simpl
;
rewrite
?(
left_id
_
_),
<-
?(
associative
_),
?IH
.
Qed
.
Lemma
uPred_big_sep_app
Ps
Qs
:
(
Π
★
(
Ps
++
Qs
))
%
I
≡
(
Π
★
Ps
★
Π
★
Qs
)
%
I
.
Proof
.
by
induction
Ps
as
[|
P
Ps
IH
];
simpl
;
rewrite
?(
left_id
_
_),
<-
?(
associative
_),
?IH
.
Qed
.
Lemma
uPred_big_sep_and
Ps
:
(
Π
★
Ps
)
%
I
⊆
(
Π
∧
Ps
)
%
I
.
Proof
.
by
induction
Ps
as
[|
P
Ps
IH
];
simpl
;
auto
.
Qed
.
Lemma
uPred_big_and_elem_of
Ps
P
:
P
∈
Ps
→
(
Π
∧
Ps
)
%
I
⊆
P
.
Proof
.
induction
1
;
simpl
;
auto
.
Qed
.
Lemma
uPred_big_sep_elem_of
Ps
P
:
P
∈
Ps
→
(
Π
★
Ps
)
%
I
⊆
P
.
Proof
.
induction
1
;
simpl
;
auto
.
Qed
.
(* Timeless *)
Global
Instance
const_timeless
(
P
:
Prop
)
:
TimelessP
(
@
uPred_const
M
P
)
.
Proof
.
by
intros
x
[|
n
]
.
Qed
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment