Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
iris-coq
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Janno
iris-coq
Commits
3b3a0a1a
Commit
3b3a0a1a
authored
9 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Improve notations for heap_lang.
parent
095fde7e
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
heap_lang/sugar.v
+31
-36
31 additions, 36 deletions
heap_lang/sugar.v
heap_lang/tests.v
+9
-15
9 additions, 15 deletions
heap_lang/tests.v
with
40 additions
and
51 deletions
heap_lang/sugar.v
+
31
−
36
View file @
3b3a0a1a
Require
Export
heap_lang
.
heap_lang
heap_lang
.
lifting
.
Import
uPred
.
Import
heap_lang
.
Import
uPred
heap_lang
.
(** Define some syntactic sugar. LitTrue and LitFalse are defined in heap_lang.v. *)
Definition
Lam
(
e
:
{
bind
expr
})
:=
Rec
e
.[
ren
(
+
1
)]
.
...
...
@@ -17,42 +16,38 @@ Definition LamV (e : {bind expr}) := RecV e.[ren(+1)].
Definition
LetCtx
(
e2
:
{
bind
expr
})
:=
AppRCtx
(
LamV
e2
)
.
Definition
SeqCtx
(
e2
:
expr
)
:=
LetCtx
(
e2
.[
ren
(
+
1
)])
.
Delimit
Scope
lang_scope
with
L
.
Bind
Scope
lang_scope
with
expr
.
Arguments
wp
{_
_}
_
_
%
L
_
.
(* TODO: The levels are all random. Also maybe we should not
make 'new' a keyword. What about Arguments for hoare triples?. *)
(* The colons indicate binders. "let" is not consistent here though,
thing are only bound in the "in". *)
Notation
"'rec::' e"
:=
(
Rec
e
)
(
at
level
100
)
:
lang_scope
.
Notation
"'λ:' e"
:=
(
Lam
e
)
(
at
level
100
)
:
lang_scope
.
Notation
"'let:' e1 'in' e2"
:=
(
Let
e1
e2
)
(
at
level
70
)
:
lang_scope
.
Notation
"e1 ';' e2"
:=
(
Seq
e1
e2
)
(
at
level
70
)
:
lang_scope
.
Notation
"'if' e1 'then' e2 'else' e3"
:=
(
If
e1
e2
e3
)
:
lang_scope
.
Module
notations
.
Delimit
Scope
lang_scope
with
L
.
Bind
Scope
lang_scope
with
expr
.
Arguments
wp
{_
_}
_
_
%
L
_
.
Notation
"#0"
:=
(
Var
0
)
(
at
level
0
)
:
lang_scope
.
Notation
"#1"
:=
(
Var
1
)
(
at
level
0
)
:
lang_scope
.
Notation
"#2"
:=
(
Var
2
)
(
at
level
0
)
:
lang_scope
.
Notation
"#3"
:=
(
Var
3
)
(
at
level
0
)
:
lang_scope
.
Notation
"#4"
:=
(
Var
4
)
(
at
level
0
)
:
lang_scope
.
Notation
"#5"
:=
(
Var
5
)
(
at
level
0
)
:
lang_scope
.
Notation
"#6"
:=
(
Var
6
)
(
at
level
0
)
:
lang_scope
.
Notation
"#7"
:=
(
Var
7
)
(
at
level
0
)
:
lang_scope
.
Notation
"#8"
:=
(
Var
8
)
(
at
level
0
)
:
lang_scope
.
Notation
"#9"
:=
(
Var
9
)
(
at
level
0
)
:
lang_scope
.
Coercion
LitNat
:
nat
>->
expr
.
Coercion
LitNatV
:
nat
>->
val
.
Coercion
Loc
:
loc
>->
expr
.
Coercion
LocV
:
loc
>->
val
.
Coercion
App
:
expr
>->
Funclass
.
Notation
"'★' e"
:=
(
Load
e
)
(
at
level
30
)
:
lang_scope
.
Notation
"e1 '<-' e2"
:=
(
Store
e1
e2
)
(
at
level
60
)
:
lang_scope
.
Notation
"'new' e"
:=
(
Alloc
e
)
(
at
level
60
)
:
lang_scope
.
Notation
"e1 '+' e2"
:=
(
Plus
e1
e2
)
:
lang_scope
.
Notation
"e1 '≤' e2"
:=
(
Le
e1
e2
)
:
lang_scope
.
Notation
"e1 '<' e2"
:=
(
Lt
e1
e2
)
:
lang_scope
.
Coercion
LitNat
:
nat
>->
expr
.
Coercion
LitNatV
:
nat
>->
val
.
Coercion
Loc
:
loc
>->
expr
.
Coercion
LocV
:
loc
>->
val
.
Coercion
App
:
expr
>->
Funclass
.
(** Syntax inspired by Coq/Ocaml. Constructions with higher precedence come
first. *)
(* What about Arguments for hoare triples?. *)
(* The colons indicate binders. "let" is not consistent here though,
thing are only bound in the "in". *)
Notation
"# n"
:=
(
Var
n
)
(
at
level
1
,
format
"# n"
)
:
lang_scope
.
Notation
"! e"
:=
(
Load
e
%
L
)
(
at
level
10
,
format
"! e"
)
:
lang_scope
.
Notation
"'ref' e"
:=
(
Alloc
e
%
L
)
(
at
level
30
)
:
lang_scope
.
Notation
"e1 + e2"
:=
(
Plus
e1
%
L
e2
%
L
)
(
at
level
50
,
left
associativity
)
:
lang_scope
.
Notation
"e1 ≤ e2"
:=
(
Le
e1
%
L
e2
%
L
)
(
at
level
70
)
:
lang_scope
.
Notation
"e1 < e2"
:=
(
Lt
e1
%
L
e2
%
L
)
(
at
level
70
)
:
lang_scope
.
(* The unicode ← is already part of the notation "_ ← _; _" for bind. *)
Notation
"e1 <- e2"
:=
(
Store
e1
%
L
e2
%
L
)
(
at
level
80
)
:
lang_scope
.
Notation
"e1 ; e2"
:=
(
Seq
e1
%
L
e2
%
L
)
(
at
level
100
)
:
lang_scope
.
Notation
"'let:' e1 'in' e2"
:=
(
Let
e1
%
L
e2
%
L
)
(
at
level
102
)
:
lang_scope
.
Notation
"'λ:' e"
:=
(
Lam
e
%
L
)
(
at
level
102
)
:
lang_scope
.
Notation
"'rec::' e"
:=
(
Rec
e
%
L
)
(
at
level
102
)
:
lang_scope
.
Notation
"'if' e1 'then' e2 'else' e3"
:=
(
If
e1
%
L
e2
%
L
e3
%
L
)
(
at
level
200
,
e1
,
e2
,
e3
at
level
200
,
only
parsing
)
:
lang_scope
.
End
notations
.
Section
suger
.
Context
{
Σ
:
iFunctor
}
.
...
...
This diff is collapsed.
Click to expand it.
heap_lang/tests.v
+
9
−
15
View file @
3b3a0a1a
(** This file is essentially a bunch of testcases. *)
Require
Import
program_logic
.
upred
.
Require
Import
heap_lang
.
lifting
heap_lang
.
sugar
.
Import
heap_lang
.
Import
uPred
.
Import
heap_lang
uPred
notations
.
Module
LangTests
.
Definition
add
:=
(
21
+
21
)
%
L
.
...
...
@@ -24,7 +23,7 @@ Module LiftingTests.
Implicit
Types
Q
:
val
→
iProp
heap_lang
Σ
.
(* FIXME: Fix levels so that we do not need the parenthesis here. *)
Definition
e
:
expr
:=
let
:
new
1
in
(
#
0
<-
★
#
0
+
1
;
★
#
0
)
%
L
.
Definition
e
:
expr
:=
(
let
:
ref
1
in
#
0
<-
!
#
0
+
1
;
!
#
0
)
%
L
.
Goal
∀
σ
E
,
(
ownP
σ
:
iProp
heap_lang
Σ
)
⊑
(
wp
E
e
(
λ
v
,
■
(
v
=
2
)))
.
Proof
.
move
=>
σ
E
.
rewrite
/
e
.
...
...
@@ -56,15 +55,12 @@ Module LiftingTests.
(* TODO: once asimpl preserves notation, we don't need
FindPred' anymore. *)
(* FIXME: fix notation so that we do not need parenthesis or %L *)
Definition
FindPred'
n1
Sn1
n2
f
:
expr
:=
if
Sn1
<
n2
then
f
Sn1
else
n1
.
Definition
FindPred
n2
:
expr
:=
rec
::
(
let
:
(
#
1
+
1
)
in
FindPred'
#
2
#
0
n2
.[
ren
(
+
3
)]
#
1
)
%
L
.
Definition
Pred
:
expr
:=
λ
:
(
if
#
0
≤
0
then
0
else
FindPred
(
#
0
)
0
)
%
L
.
Definition
FindPred'
n1
Sn1
n2
f
:
expr
:=
if
Sn1
<
n2
then
f
Sn1
else
n1
.
Definition
FindPred
n2
:
expr
:=
rec
::
(
let
:
#
1
+
1
in
FindPred'
#
2
#
0
n2
.[
ren
(
+
3
)]
#
1
)
%
L
.
Definition
Pred
:
expr
:=
λ
:
(
if
#
0
≤
0
then
0
else
FindPred
#
0
0
)
%
L
.
Lemma
FindPred_spec
n1
n2
E
Q
:
(
■
(
n1
<
n2
)
∧
Q
(
pred
n2
))
⊑
...
...
@@ -112,9 +108,7 @@ Module LiftingTests.
Qed
.
Goal
∀
E
,
True
⊑
wp
(
Σ
:=
Σ
)
E
(* FIXME why do we need %L here? *)
(
let
:
Pred
42
in
Pred
#
0
)
%
L
(
λ
v
,
■
(
v
=
40
))
.
True
⊑
wp
(
Σ
:=
Σ
)
E
(
let
:
Pred
42
in
Pred
#
0
)
(
λ
v
,
■
(
v
=
40
))
.
Proof
.
intros
E
.
rewrite
-
wp_let
.
rewrite
-
Pred_spec
-!
later_intro
.
asimpl
.
(* TODO RJ: Can we somehow make it so that Pred gets folded again? *)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment