Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
iris-coq
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Janno
iris-coq
Commits
38d2f0d2
Commit
38d2f0d2
authored
9 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Clean up global CMRA.
parent
ff9ebff8
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
program_logic/global_cmra.v
+54
-107
54 additions, 107 deletions
program_logic/global_cmra.v
with
54 additions
and
107 deletions
program_logic/global_cmra.v
+
54
−
107
View file @
38d2f0d2
...
@@ -9,139 +9,86 @@ Definition globalC (Σ : gid → iFunctor) : iFunctor :=
...
@@ -9,139 +9,86 @@ Definition globalC (Σ : gid → iFunctor) : iFunctor :=
Class
InG
(
Λ
:
language
)
(
Σ
:
gid
→
iFunctor
)
(
i
:
gid
)
(
A
:
cmraT
)
:=
Class
InG
(
Λ
:
language
)
(
Σ
:
gid
→
iFunctor
)
(
i
:
gid
)
(
A
:
cmraT
)
:=
inG
:
A
=
Σ
i
(
laterC
(
iPreProp
Λ
(
globalC
Σ
)))
.
inG
:
A
=
Σ
i
(
laterC
(
iPreProp
Λ
(
globalC
Σ
)))
.
Definition
to_globalC
{
Λ
Σ
A
}
(
i
:
gid
)
`{
!
InG
Λ
Σ
i
A
}
(
γ
:
gid
)
(
a
:
A
)
:
iGst
Λ
(
globalC
Σ
)
:=
iprod_singleton
i
{[
γ
↦
cmra_transport
inG
a
]}
.
Definition
own
{
Λ
Σ
A
}
(
i
:
gid
)
`{
!
InG
Λ
Σ
i
A
}
(
γ
:
gid
)
(
a
:
A
)
:
iProp
Λ
(
globalC
Σ
)
:=
ownG
(
to_globalC
i
γ
a
)
.
Instance
:
Params
(
@
to_globalC
)
6
.
Instance
:
Params
(
@
own
)
6
.
Typeclasses
Opaque
to_globalC
own
.
Section
global
.
Section
global
.
Context
{
Λ
:
language
}
{
Σ
:
gid
→
iFunctor
}
(
i
:
gid
)
`{
!
InG
Λ
Σ
i
A
}
.
Context
{
Λ
:
language
}
{
Σ
:
gid
→
iFunctor
}
(
i
:
gid
)
`{
!
InG
Λ
Σ
i
A
}
.
Implicit
Types
a
:
A
.
Implicit
Types
a
:
A
.
Definition
to_Σ
(
a
:
A
)
:
Σ
i
(
laterC
(
iPreProp
Λ
(
globalC
Σ
)))
:=
eq_rect
A
id
a
_
inG
.
Definition
to_globalC
(
γ
:
gid
)
`{
!
InG
Λ
Σ
i
A
}
(
a
:
A
)
:
iGst
Λ
(
globalC
Σ
)
:=
iprod_singleton
i
{[
γ
↦
to_Σ
a
]}
.
Definition
own
(
γ
:
gid
)
(
a
:
A
)
:
iProp
Λ
(
globalC
Σ
)
:=
ownG
(
to_globalC
γ
a
)
.
Definition
from_Σ
(
b
:
Σ
i
(
laterC
(
iPreProp
Λ
(
globalC
Σ
))))
:
A
:=
eq_rect
(
Σ
i
_)
id
b
_
(
Logic
.
eq_sym
inG
)
.
Definition
P_to_Σ
(
P
:
A
→
Prop
)
(
b
:
Σ
i
(
laterC
(
iPreProp
Λ
(
globalC
Σ
))))
:
Prop
:=
P
(
from_Σ
b
)
.
(* Properties of the transport. *)
Lemma
to_from_Σ
b
:
to_Σ
(
from_Σ
b
)
=
b
.
Proof
.
rewrite
/
to_Σ
/
from_Σ
.
by
destruct
inG
.
Qed
.
(* Properties of to_globalC *)
(* Properties of to_globalC *)
Lemma
globalC_op
γ
a1
a2
:
Instance
to_globalC_ne
γ
n
:
Proper
(
dist
n
==>
dist
n
)
(
to_globalC
i
γ
)
.
to_globalC
γ
(
a1
⋅
a2
)
≡
to_globalC
γ
a1
⋅
to_globalC
γ
a2
.
Proof
.
by
intros
a
a'
Ha
;
apply
iprod_singleton_ne
;
rewrite
Ha
.
Qed
.
Proof
.
Lemma
to_globalC_validN
n
γ
a
:
✓
{
n
}
(
to_globalC
i
γ
a
)
↔
✓
{
n
}
a
.
rewrite
/
to_globalC
iprod_op_singleton
map_op_singleton
.
apply
iprod_singleton_proper
,
(
fin_maps
.
singleton_proper
(
M
:=
gmap
_))
.
by
rewrite
/
to_Σ
;
destruct
inG
.
Qed
.
Lemma
globalC_validN
n
γ
a
:
✓
{
n
}
(
to_globalC
γ
a
)
↔
✓
{
n
}
a
.
Proof
.
Proof
.
rewrite
/
to_globalC
iprod_singleton_validN
map_singleton_validN
.
by
rewrite
/
to_globalC
by
rewrite
/
to_Σ
;
destruct
inG
.
iprod_singleton_validN
map_singleton_validN
cmra_transport_validN
.
Qed
.
Qed
.
Lemma
to_globalC_op
γ
a1
a2
:
Lemma
globalC_unit
γ
a
:
to_globalC
i
γ
(
a1
⋅
a2
)
≡
to_globalC
i
γ
a1
⋅
to_globalC
i
γ
a2
.
unit
(
to_globalC
γ
a
)
≡
to_globalC
γ
(
unit
a
)
.
Proof
.
Proof
.
rewrite
/
to_globalC
.
by
rewrite
/
to_globalC
iprod_op_singleton
map_op_singleton
cmra_transport_op
.
rewrite
iprod_unit_singleton
map_unit_singleton
.
apply
iprod_singleton_proper
,
(
fin_maps
.
singleton_proper
(
M
:=
gmap
_))
.
by
rewrite
/
to_Σ
;
destruct
inG
.
Qed
.
Qed
.
Lemma
to_globalC_unit
γ
a
:
unit
(
to_globalC
i
γ
a
)
≡
to_globalC
i
γ
(
unit
a
)
.
Global
Instance
globalC_timeless
γ
m
:
Timeless
m
→
Timeless
(
to_globalC
γ
m
)
.
Proof
.
Proof
.
rewrite
/
to_globalC
=>
?
.
by
rewrite
/
to_globalC
apply
(
iprod_singleton_timeless
_
_
_),
map_singleton_timeless
.
iprod_unit_singleton
map_unit_singleton
cmra_transport_unit
.
by
rewrite
/
to_Σ
;
destruct
inG
.
Qed
.
Qed
.
Instance
to_globalC_timeless
γ
m
:
Timeless
m
→
Timeless
(
to_globalC
i
γ
m
)
.
(* Properties of the lifted frame-preserving updates *)
Proof
.
rewrite
/
to_globalC
;
apply
_
.
Qed
.
Lemma
update_to_Σ
a
P
:
a
~~>:
P
→
to_Σ
a
~~>:
P_to_Σ
P
.
Proof
.
move
=>
Hu
gf
n
Hf
.
destruct
(
Hu
(
from_Σ
gf
)
n
)
as
[
a'
Ha'
]
.
{
move
:
Hf
.
rewrite
/
to_Σ
/
from_Σ
.
by
destruct
inG
.
}
exists
(
to_Σ
a'
)
.
move
:
Hf
Ha'
.
rewrite
/
P_to_Σ
/
to_Σ
/
from_Σ
.
destruct
inG
.
done
.
Qed
.
(* Properties of own *)
(* Properties of own *)
Global
Instance
own_ne
γ
n
:
Proper
(
dist
n
==>
dist
n
)
(
own
i
γ
)
.
Global
Instance
own_ne
γ
n
:
Proper
(
dist
n
==>
dist
n
)
(
own
γ
)
.
Proof
.
by
intros
m
m'
Hm
;
rewrite
/
own
Hm
.
Qed
.
Global
Instance
own_proper
γ
:
Proper
((
≡
)
==>
(
≡
))
(
own
i
γ
)
:=
ne_proper
_
.
Lemma
own_op
γ
a1
a2
:
own
i
γ
(
a1
⋅
a2
)
≡
(
own
i
γ
a1
★
own
i
γ
a2
)
%
I
.
Proof
.
by
rewrite
/
own
-
ownG_op
to_globalC_op
.
Qed
.
Lemma
always_own_unit
γ
a
:
(
□
own
i
γ
(
unit
a
))
%
I
≡
own
i
γ
(
unit
a
)
.
Proof
.
by
rewrite
/
own
-
to_globalC_unit
always_ownG_unit
.
Qed
.
Lemma
own_valid
γ
a
:
own
i
γ
a
⊑
✓
a
.
Proof
.
Proof
.
intros
m
m'
Hm
;
apply
ownG_ne
,
iprod_singleton_ne
,
singleton_ne
.
rewrite
/
own
ownG_valid
;
apply
valid_mono
=>
?;
apply
to_globalC_validN
.
by
rewrite
/
to_globalC
/
to_Σ
;
destruct
inG
.
Qed
.
Qed
.
Lemma
own_valid_r'
γ
a
:
own
i
γ
a
⊑
(
own
i
γ
a
★
✓
a
)
.
Global
Instance
own_proper
γ
:
Proper
((
≡
)
==>
(
≡
))
(
own
γ
)
:=
ne_proper
_
.
Lemma
own_op
γ
a1
a2
:
own
γ
(
a1
⋅
a2
)
≡
(
own
γ
a1
★
own
γ
a2
)
%
I
.
Proof
.
rewrite
/
own
-
ownG_op
.
apply
ownG_proper
,
globalC_op
.
Qed
.
(* TODO: This also holds if we just have ✓a at the current step-idx, as Iris
assertion. However, the map_updateP_alloc does not suffice to show this. *)
Lemma
own_alloc
E
a
:
✓
a
→
True
⊑
pvs
E
E
(
∃
γ
,
own
γ
a
)
.
Proof
.
intros
Ha
.
set
(
P
m
:=
∃
γ
,
m
=
to_globalC
γ
a
)
.
rewrite
-
(
pvs_mono
_
_
(
∃
m
,
■
P
m
∧
ownG
m
)
%
I
)
.
-
rewrite
-
pvs_ownG_updateP_empty
//
;
[]
.
subst
P
.
eapply
(
iprod_singleton_updateP_empty
i
)
.
+
apply
map_updateP_alloc'
with
(
x
:=
to_Σ
a
)
.
by
rewrite
/
to_Σ
;
destruct
inG
.
+
simpl
.
move
=>?
[
γ
[
->
?]]
.
exists
γ
.
done
.
-
apply
exist_elim
=>
m
.
apply
const_elim_l
=>
-
[
p
->
]
{
P
}
.
by
rewrite
-
(
exist_intro
p
)
.
Qed
.
Lemma
always_own_unit
γ
a
:
(
□
own
γ
(
unit
a
))
%
I
≡
own
γ
(
unit
a
)
.
Proof
.
rewrite
/
own
-
globalC_unit
.
by
apply
always_ownG_unit
.
Qed
.
Lemma
own_valid
γ
a
:
(
own
γ
a
)
⊑
(
✓
a
)
.
Proof
.
rewrite
/
own
ownG_valid
.
apply
uPred
.
valid_mono
=>
n
.
by
apply
globalC_validN
.
Qed
.
Lemma
own_valid_r'
γ
a
:
(
own
γ
a
)
⊑
(
own
γ
a
★
✓
a
)
.
Proof
.
apply
(
uPred
.
always_entails_r'
_
_),
own_valid
.
Qed
.
Proof
.
apply
(
uPred
.
always_entails_r'
_
_),
own_valid
.
Qed
.
Global
Instance
own_timeless
γ
a
:
Timeless
a
→
TimelessP
(
own
i
γ
a
)
.
Proof
.
unfold
own
;
apply
_
.
Qed
.
Global
Instance
ownG_timeless
γ
a
:
Timeless
a
→
TimelessP
(
own
γ
a
)
.
(* TODO: This also holds if we just have ✓ a at the current step-idx, as Iris
assertion. However, the map_updateP_alloc does not suffice to show this. *)
Lemma
own_alloc
E
a
:
✓
a
→
True
⊑
pvs
E
E
(
∃
γ
,
own
i
γ
a
)
.
Proof
.
Proof
.
intros
.
apply
ownG_timeless
.
apply
_
.
intros
Ha
.
rewrite
-
(
pvs_mono
_
_
(
∃
m
,
■
(
∃
γ
,
m
=
to_globalC
i
γ
a
)
∧
ownG
m
)
%
I
)
.
*
eapply
pvs_ownG_updateP_empty
,
(
iprod_singleton_updateP_empty
i
);
first
(
eapply
map_updateP_alloc'
,
cmra_transport_valid
,
Ha
);
naive_solver
.
*
apply
exist_elim
=>
m
;
apply
const_elim_l
=>
-
[
γ
->
]
.
by
rewrite
-
(
exist_intro
γ
)
.
Qed
.
Qed
.
Lemma
pvs_updateP
E
γ
a
P
:
Lemma
pvs_updateP
E
γ
a
P
:
a
~~>:
P
→
own
γ
a
⊑
pvs
E
E
(
∃
a'
,
■
P
a'
∧
own
γ
a'
)
.
a
~~>:
P
→
own
i
γ
a
⊑
pvs
E
E
(
∃
a'
,
■
P
a'
∧
own
i
γ
a'
)
.
Proof
.
Proof
.
intros
Ha
.
set
(
P'
m
:=
∃
a'
,
P
a'
∧
m
=
to_globalC
γ
a'
)
.
intros
Ha
.
rewrite
-
(
pvs_mono
_
_
(
∃
m
,
■
P'
m
∧
ownG
m
)
%
I
)
.
rewrite
-
(
pvs_mono
_
_
(
∃
m
,
■
(
∃
b
,
m
=
to_globalC
i
γ
b
∧
P
b
)
∧
ownG
m
)
%
I
)
.
-
rewrite
-
pvs_ownG_updateP
;
first
by
rewrite
/
own
.
*
eapply
pvs_ownG_updateP
,
iprod_singleton_updateP
;
rewrite
/
to_globalC
.
eapply
iprod_singleton_updateP
.
first
(
eapply
map_singleton_updateP'
,
cmra_transport_updateP'
,
Ha
)
.
+
(* FIXME RJ: I tried apply... with instead of instantiate, that
naive_solver
.
does not work. *)
*
apply
exist_elim
=>
m
;
apply
const_elim_l
=>
-
[
a'
[
->
HP
]]
.
apply
map_singleton_updateP'
.
instantiate
(
1
:=
P_to_Σ
P
)
.
rewrite
-
(
exist_intro
a'
)
.
by
apply
and_intro
;
[
apply
const_intro
|]
.
by
apply
update_to_Σ
.
+
simpl
.
move
=>?
[
y
[
->
HP
]]
.
exists
(
from_Σ
y
)
.
split
.
*
move
:
HP
.
rewrite
/
P_to_Σ
/
from_Σ
.
by
destruct
inG
.
*
clear
HP
.
rewrite
/
to_globalC
to_from_Σ
;
done
.
-
apply
exist_elim
=>
m
.
apply
const_elim_l
=>
-
[
a'
[
HP
->
]]
.
rewrite
-
(
exist_intro
a'
)
.
apply
and_intro
;
last
done
.
by
apply
const_intro
.
Qed
.
Qed
.
Lemma
pvs_update
E
γ
a
a'
:
a
~~>
a'
→
own
γ
a
⊑
pvs
E
E
(
own
γ
a'
)
.
Lemma
pvs_update
E
γ
a
a'
:
a
~~>
a'
→
own
i
γ
a
⊑
pvs
E
E
(
own
i
γ
a'
)
.
Proof
.
Proof
.
intros
;
rewrite
(
pvs_updateP
E
_
_
(
a'
=
));
last
by
apply
cmra_update_updateP
.
intros
;
rewrite
(
pvs_updateP
E
_
_
(
a'
=
));
last
by
apply
cmra_update_updateP
.
by
apply
pvs_mono
,
uPred
.
exist_elim
=>
m''
;
apply
uPred
.
const_elim_l
=>
->
.
by
apply
pvs_mono
,
uPred
.
exist_elim
=>
m''
;
apply
uPred
.
const_elim_l
=>
->
.
Qed
.
Qed
.
End
global
.
End
global
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment