Skip to content
Snippets Groups Projects
Commit f58be2a9 authored by Simon Spies's avatar Simon Spies
Browse files

derive more adequacy results

parent 9ba8b512
No related branches found
No related tags found
No related merge requests found
Pipeline #111595 passed
......@@ -851,3 +851,44 @@ Section adequacy.
Qed.
End adequacy.
Definition heapΣ SI : gFunctors SI := #[invΣ SI; gen_heapΣ loc val; proph_mapΣ proph_id (val * val)].
Instance subG_heapPreG {SI} {Σ: gFunctors SI} : subG (heapΣ SI) Σ heapPreG Σ.
Proof. solve_inG. Qed.
Definition refΣ SI := #[heapΣ SI; na_invΣ; #[GFunctor (constRF (authR (cfgUR SI)))]; fmlistΣ (cfg heap_lang); na_invΣ; #[GFunctor (constRF (authR (natA SI)))]].
Instance subG_refΣ_rheapPreG {SI} {Σ: gFunctors SI} : subG (refΣ SI) Σ rheapPreG Σ.
Proof.
intros ?. split; solve_inG.
Qed.
Instance subG_refΣ_na_invG Σ : subG (refΣ ordI) Σ na_invG Σ.
Proof. solve_inG. Qed.
Instance subG_refΣ_source_natG Σ : subG (refΣ ordI) Σ inG Σ (authR (natA ordI)).
Proof. solve_inG. Qed.
Section adequacy_ordinals_closed.
Context `{C: Classical} {Σ: gFunctors ordI} `{Hsub: !subG (refΣ ordI) Σ}.
Theorem heap_lang_ref_adequacy_closed (φ: val val Prop) (s t: expr) σ σ_src:
( `{!rheapG Σ} `{!seqG Σ} `{!auth_sourceG Σ (natA ordI)}, src s SEQ t ⟨⟨ v, v': val, src v' φ v v' ⟩⟩)
( σ' v, rtc erased_step ([t], σ) ([Val v], σ') v': val, σ_src' ts, rtc erased_step ([s], σ_src) (Val v' :: ts, σ_src') φ v v')
(sn erased_step ([s], σ_src) sn erased_step ([t], σ)).
Proof using Hsub C.
apply heap_lang_ref_adequacy.
Qed.
End adequacy_ordinals_closed.
From Coq.Logic Require Import Classical_Prop.
Theorem heap_lang_ref_adequacy_fully_closed (φ: val val Prop) (s t: expr) σ σ_src:
( `{!rheapG (refΣ ordI)} `{!seqG (refΣ ordI)} `{!auth_sourceG (refΣ ordI) (natA ordI)}, src s SEQ t ⟨⟨ v, v': val, src v' φ v v' ⟩⟩)
( σ' v, rtc erased_step ([t], σ) ([Val v], σ') v': val, σ_src' ts, rtc erased_step ([s], σ_src) (Val v' :: ts, σ_src') φ v v')
(sn erased_step ([s], σ_src) sn erased_step ([t], σ)).
Proof.
assert (Classical).
{ intros P. apply classic. }
apply heap_lang_ref_adequacy_closed.
Qed.
\ No newline at end of file
......@@ -62,6 +62,32 @@ Section adequacy_ord.
Proof using C Σ Hpre Hna Htc.
apply heap_lang_ref_adequacy.
Qed.
Print Assumptions heap_lang_ref_adequacy_ord.
End adequacy_ord.
Definition heapΣ SI : gFunctors SI := #[invΣ SI; gen_heapΣ loc val; proph_mapΣ proph_id (val * val)].
Instance subG_heapPreG {SI} {Σ: gFunctors SI} : subG (heapΣ SI) Σ heapPreG Σ.
Proof. solve_inG. Qed.
Definition tcΣ SI: gFunctors SI := #[GFunctor (constRF (authR (ordA SI)))].
Local Instance subG_tcΣ {SI} {Σ: gFunctors SI} : subG (tcΣ SI) Σ inG Σ (authR (ordA SI)).
Proof. solve_inG. Qed.
Definition termΣ SI := #[heapΣ SI; na_invΣ; tcΣ SI].
From Coq.Logic Require Import Classical_Prop.
Theorem heap_lang_ref_adequacy_closed (e: expr) σ:
( `{heapG ordI (termΣ ordI)} `{!seqG (termΣ ordI)} `{!auth_sourceG (termΣ ordI) (ordA ordI)},
True ( α, $α -∗ SEQ e ⟨⟨ v, True ⟩⟩)%I
)
sn erased_step ([e], σ).
Proof.
assert (Classical).
{ intros P. apply classic. }
apply heap_lang_ref_adequacy.
Qed.
Print Assumptions heap_lang_ref_adequacy_closed.
\ No newline at end of file
......@@ -850,7 +850,7 @@ From iris.examples.termination Require Import adequacy.
Section adequacy.
Context {SI} `{C: Classical} {Σ: gFunctors SI} {Hlarge: LargeIndex SI}.
Context `{Hpre: !heapPreG Σ} `{Hna: !na_invG Σ} `{Htc: !inG Σ (authR (ordA SI))}.
Context `{Hpre: !heapPreG Σ} `{Hna: !na_invG Σ} `{Htc: !inG Σ (authR (ordA SI))} `{Tok: !inG Σ (exclR (unitO SI))}.
Theorem simple_logrel_adequacy (e: expr) σ A:
( `{heapG SI Σ} `{!seqG Σ} `{!auth_sourceG Σ (ordA SI)},
......@@ -890,7 +890,7 @@ End adequacy.
Section ordinals.
Context `{C: Classical} {Σ: gFunctors ordI}.
Context `{Hpre: !heapPreG Σ} `{Hna: !na_invG Σ} `{Htc: !inG Σ (authR (ordA ordI))}.
Context `{Hpre: !heapPreG Σ} `{Hna: !na_invG Σ} `{Htc: !inG Σ (authR (ordA ordI))} `{Tok: !inG Σ (exclR (unitO ordI))}.
Theorem simple_logrel_adequacy_ord (e: expr) σ A:
( `{heapG ordI Σ} `{!seqG Σ} `{!auth_sourceG Σ (ordA ordI)},
......@@ -928,3 +928,33 @@ Section ordinals.
End ordinals.
Definition logrelΣ := #[termΣ ordI; GFunctor (constRF (exclR (unitO ordI)))].
Instance subG_logrelΣ_tok {Σ: gFunctors ordI} : subG (logrelΣ) Σ inG Σ (exclR (unitO ordI)).
Proof. solve_inG. Qed.
From Coq.Logic Require Import Classical_Prop.
Theorem simple_logrel_adequacy_closed (e: expr) σ A:
( `{heapG ordI logrelΣ} `{!seqG logrelΣ} `{!auth_sourceG logrelΣ (ordA ordI)},
ltyped e A
)
sn erased_step ([e], σ).
Proof.
assert (Classical).
{ intros P. apply classic. }
unshelve eapply simple_logrel_adequacy_ord.
apply subG_tcΣ. apply _.
Qed.
Theorem logrel_adequacy_closed (e: expr) σ A:
( `{heapG ordI logrelΣ} `{!seqG logrelΣ} `{!auth_sourceG logrelΣ (ordA ordI)},
lptyped e A
)
sn erased_step ([e], σ).
Proof.
assert (Classical).
{ intros P. apply classic. }
unshelve eapply logrel_adequacy_ord.
apply subG_tcΣ. apply _.
Qed.
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment