Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
stdpp
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
stdpp
Merge requests
!65
gmultiset lemmas
Code
Review changes
Check out branch
Download
Patches
Plain diff
Merged
gmultiset lemmas
dfrumin/coq-stdpp:gmultiset_lemmas
into
master
Overview
27
Commits
7
Pipelines
0
Changes
3
1 unresolved thread
Hide all comments
Merged
Dan Frumin
requested to merge
dfrumin/coq-stdpp:gmultiset_lemmas
into
master
6 years ago
Overview
27
Commits
7
Pipelines
0
Changes
3
1 unresolved thread
Hide all comments
Expand
0
0
Merge request reports
Compare
master
version 5
765e544c
6 years ago
version 4
87c732fc
6 years ago
version 3
90c03053
6 years ago
version 2
a41a00fd
6 years ago
version 1
c21663f9
6 years ago
master (base)
and
latest version
latest version
3521f39b
7 commits,
6 years ago
version 5
765e544c
7 commits,
6 years ago
version 4
87c732fc
6 commits,
6 years ago
version 3
90c03053
5 commits,
6 years ago
version 2
a41a00fd
4 commits,
6 years ago
version 1
c21663f9
3 commits,
6 years ago
3 files
+
64
−
4
Inline
Compare changes
Side-by-side
Inline
Show whitespace changes
Show one file at a time
Files
3
Search (e.g. *.vue) (Ctrl+P)
theories/fin_sets.v
+
24
−
0
Options
@@ -101,6 +101,14 @@ Proof.
apply
Permutation_singleton
.
by
rewrite
<-
(
right_id
∅
(
∪
)
{[
x
]}),
elements_union_singleton
,
elements_empty
by
set_solver
.
Qed
.
Lemma
elements_disj_union
(
X
Y
:
C
)
:
X
##
Y
→
elements
(
X
∪
Y
)
≡
ₚ
elements
X
++
elements
Y
.
Proof
.
intros
HXY
.
apply
NoDup_Permutation
.
-
apply
NoDup_elements
.
-
apply
NoDup_app
.
set_solver
by
eauto
using
NoDup_elements
.
-
set_solver
.
Qed
.
Lemma
elements_submseteq
X
Y
:
X
⊆
Y
→
elements
X
⊆+
elements
Y
.
Proof
.
intros
;
apply
NoDup_submseteq
;
eauto
using
NoDup_elements
.
@@ -222,6 +230,22 @@ Lemma set_fold_proper {B} (R : relation B) `{!Equivalence R}
Proper
((
≡
)
==>
R
)
(
set_fold
f
b
:
C
→
B
)
.
Proof
.
intros
??
E
.
apply
(
foldr_permutation
R
f
b
);
auto
.
by
rewrite
E
.
Qed
.
Lemma
set_fold_empty
{
B
}
(
f
:
A
→
B
→
B
)
(
b
:
B
)
:
set_fold
f
b
(
∅
:
C
)
=
b
.
Proof
.
by
unfold
set_fold
;
simpl
;
rewrite
elements_empty
.
Qed
.
Lemma
set_fold_singleton
{
B
}
(
f
:
A
→
B
→
B
)
(
b
:
B
)
(
a
:
A
)
:
set_fold
f
b
({[
a
]}
:
C
)
=
f
a
b
.
Proof
.
by
unfold
set_fold
;
simpl
;
rewrite
elements_singleton
.
Qed
.
Lemma
set_fold_disj_union
(
f
:
A
→
A
→
A
)
(
b
:
A
)
X
Y
:
Comm
(
=
)
f
→
Assoc
(
=
)
f
→
X
##
Y
→
set_fold
f
b
(
X
∪
Y
)
=
set_fold
f
(
set_fold
f
b
X
)
Y
.
Proof
.
intros
Hcomm
Hassoc
Hdisj
.
unfold
set_fold
;
simpl
.
by
rewrite
elements_disj_union
,
<-
foldr_app
,
(
comm
(
++
))
.
Qed
.
(** * Minimal elements *)
Lemma
minimal_exists
R
`{
!
Transitive
R
,
∀
x
y
,
Decision
(
R
x
y
)}
(
X
:
C
)
:
X
≢
∅
→
∃
x
,
x
∈
X
∧
minimal
R
x
X
.
Loading