Skip to content
Snippets Groups Projects

More efficient `Countable` instance for list and make `namespaces` independent of that.

Closed Robbert Krebbers requested to merge robbert/countable_list into master
1 unresolved thread
2 files
+ 69
63
Compare changes
  • Side-by-side
  • Inline
Files
2
+ 29
52
@@ -212,62 +212,39 @@ Next Obligation.
Qed.
(** ** Lists *)
(* Lists are encoded as 1 separated sequences of 0s corresponding to the unary
representation of the elements. *)
Fixpoint list_encode `{Countable A} (acc : positive) (l : list A) : positive :=
match l with
| [] => acc
| x :: l => list_encode (Nat.iter (encode_nat x) (~0) (acc~1)) l
end.
Fixpoint list_decode `{Countable A} (acc : list A)
(n : nat) (p : positive) : option (list A) :=
match p with
| 1 => Some acc
| p~0 => list_decode acc (S n) p
| p~1 => x decode_nat n; list_decode (x :: acc) O p
Fixpoint list_encode_ (l : list positive) : positive :=
match l with [] => 1 | x :: l => prod_encode x (list_encode_ l) end.
Definition list_encode (l : list positive) : positive :=
prod_encode (Pos.of_nat (S (length l))) (list_encode_ l).
Fixpoint list_decode_ (n : nat) (p : positive) : option (list positive) :=
match n with
| O => guard (p = 1); Some []
| S n =>
x prod_decode_fst p; pl prod_decode_snd p;
l list_decode_ n pl; Some (x :: l)
end.
Lemma x0_iter_x1 n acc : Nat.iter n (~0) acc~1 = acc ++ Nat.iter n (~0) 3.
Proof. by induction n; f_equal/=. Qed.
Lemma list_encode_app' `{Countable A} (l1 l2 : list A) acc :
list_encode acc (l1 ++ l2) = list_encode acc l1 ++ list_encode 1 l2.
Definition list_decode (p : positive) : option (list positive) :=
pn prod_decode_fst p; pl prod_decode_snd p;
list_decode_ (pred (Pos.to_nat pn)) pl.
Lemma list_decode_encode l : list_decode (list_encode l) = Some l.
Proof.
revert acc; induction l1; simpl; auto.
induction l2 as [|x l IH]; intros acc; simpl; [by rewrite ?(left_id_L _ _)|].
by rewrite !(IH (Nat.iter _ _ _)), (assoc_L _), x0_iter_x1.
cut (list_decode_ (length l) (list_encode_ l) = Some l).
{ intros help. unfold list_decode, list_encode.
rewrite prod_decode_encode_fst, prod_decode_encode_snd; csimpl.
by rewrite Nat2Pos.id by done; simpl. }
induction l; simpl; auto.
by rewrite prod_decode_encode_fst, prod_decode_encode_snd; simplify_option_eq.
Qed.
Program Instance list_countable `{Countable A} : Countable (list A) :=
{| encode := list_encode 1; decode := list_decode [] 0 |}.
Program Instance list_countable `{Countable A} : Countable (list A) := {|
encode l := list_encode (encode <$> l);
decode p := list_decode p ≫= mapM decode
|}.
Next Obligation.
intros A ??; simpl.
assert ( m acc n p, list_decode acc n (Nat.iter m (~0) p)
= list_decode acc (n + m) p) as decode_iter.
{ induction m as [|m IH]; intros acc n p; simpl; [by rewrite Nat.add_0_r|].
by rewrite IH, Nat.add_succ_r. }
cut ( l acc, list_decode acc 0 (list_encode 1 l) = Some (l ++ acc))%list.
{ by intros help l; rewrite help, (right_id_L _ _). }
induction l as [|x l IH] using @rev_ind; intros acc; [done|].
rewrite list_encode_app'; simpl; rewrite <-x0_iter_x1, decode_iter; simpl.
by rewrite decode_encode_nat; simpl; rewrite IH, <-(assoc_L _).
Qed.
Lemma list_encode_app `{Countable A} (l1 l2 : list A) :
encode (l1 ++ l2)%list = encode l1 ++ encode l2.
Proof. apply list_encode_app'. Qed.
Lemma list_encode_cons `{Countable A} x (l : list A) :
encode (x :: l) = Nat.iter (encode_nat x) (~0) 3 ++ encode l.
Proof. apply (list_encode_app' [_]). Qed.
Lemma list_encode_suffix `{Countable A} (l k : list A) :
l `suffix_of` k q, encode k = q ++ encode l.
Proof. intros [l' ->]; exists (encode l'); apply list_encode_app. Qed.
Lemma list_encode_suffix_eq `{Countable A} q1 q2 (l1 l2 : list A) :
length l1 = length l2 q1 ++ encode l1 = q2 ++ encode l2 l1 = l2.
Proof.
revert q1 q2 l2; induction l1 as [|a1 l1 IH];
intros q1 q2 [|a2 l2] ?; simplify_eq/=; auto.
rewrite !list_encode_cons, !(assoc _); intros Hl.
assert (l1 = l2) as <- by eauto; clear IH; f_equal.
apply (inj encode_nat); apply (inj (++ encode l1)) in Hl; revert Hl; clear.
generalize (encode_nat a2).
induction (encode_nat a1); intros [|?] ?; naive_solver.
intros ??? l; simpl; rewrite list_decode_encode; simpl.
apply mapM_fmap_Some; auto using decode_encode.
Qed.
(** ** Numbers *)
Loading