Skip to content
Snippets Groups Projects

Add `map_Forall2_dom`.

Merged Robbert Krebbers requested to merge robbert/map_Forall2_dom into master
1 file
+ 13
0
Compare changes
  • Side-by-side
  • Inline
+ 13
0
@@ -187,6 +187,15 @@ Lemma map_first_key_dom_L {A B} (m1 : M A) (m2 : M B) i :
dom m1 = dom m2 map_first_key m1 i map_first_key m2 i.
Proof. intros Hm. apply map_first_key_dom. by rewrite Hm. Qed.
Lemma map_Forall2_dom {A B} (P : K A B Prop) (m1 : M A) (m2 : M B) :
map_Forall2 P m1 m2 dom m1 dom m2.
Proof.
revert m2. induction m1 as [|i x1 m1 ? IH] using map_ind; intros m2.
{ intros ->%map_Forall2_empty_inv_l. by rewrite !dom_empty. }
intros (x2 & m2' & -> & ? & ? & ?)%map_Forall2_insert_inv_l; last done.
by rewrite !dom_insert, IH by done.
Qed.
(** Alternative definition of [dom] in terms of [map_to_list]. *)
Lemma dom_alt {A} (m : M A) :
dom m list_to_set (map_to_list m).*1.
@@ -324,6 +333,7 @@ Proof. intros ???. unfold_leibniz. by apply dom_proper. Qed.
Section leibniz.
Context `{!LeibnizEquiv D}.
Lemma dom_filter_L {A} (P : K * A Prop) `{!∀ x, Decision (P x)} (m : M A) X :
( i, i X x, m !! i = Some x P (i, x))
dom (filter P m) = X.
@@ -358,6 +368,9 @@ Section leibniz.
Proof. unfold_leibniz; apply dom_difference. Qed.
Lemma dom_fmap_L {A B} (f : A B) (m : M A) : dom (f <$> m) = dom m.
Proof. unfold_leibniz; apply dom_fmap. Qed.
Lemma map_Forall2_dom_L {A B} (P : K A B Prop) (m1 : M A) (m2 : M B) :
map_Forall2 P m1 m2 dom m1 = dom m2.
Proof. unfold_leibniz. apply map_Forall2_dom. Qed.
Lemma dom_imap_L {A B} (f: K A option B) (m: M A) X :
( i, i X x, m !! i = Some x is_Some (f i x))
dom (map_imap f m) = X.
Loading