Skip to content
Snippets Groups Projects

f_equiv: slightly better support for function relations

Merged Ralf Jung requested to merge ralf/f_equiv_ho into master
All threads resolved!
Files
3
+ 47
0
@@ -21,6 +21,18 @@ Section tests.
baz (bar (f 0)) (f 2).
Goal Proper (pointwise_relation nat () ==> ()) test3.
Proof. solve_proper. Qed.
(* We mirror [discrete_fun] from Iris to have an equivalence on a function
space. *)
Definition discrete_fun {A} (B : A Type) `{!∀ x, Equiv (B x)} := x : A, B x.
Local Instance discrete_fun_equiv {A} {B : A Type} `{!∀ x, Equiv (B x)} :
Equiv (discrete_fun B) :=
λ f g, x, f x g x.
Notation "A -d> B" :=
(@discrete_fun A (λ _, B) _) (at level 99, B at level 200, right associativity).
Definition test4 x (f : A -d> A) := f x.
Goal x, Proper (() ==> ()) (test4 x).
Proof. solve_proper. Qed.
End tests.
Global Instance from_option_proper_test1 `{Equiv A} {B} (R : relation B) (f : A B) :
@@ -30,6 +42,41 @@ Global Instance from_option_proper_test2 `{Equiv A} {B} (R : relation B) (f : A
Proper (() ==> R) f Proper (R ==> () ==> R) (from_option f).
Proof. solve_proper. Qed.
(** The following tests are inspired by Iris's [ofe] structure (here, simplified
to just a type an arbitrary relation), and the discrete function space [A -d> B]
on a Type [A] and OFE [B]. The tests occur when proving [Proper]s for
higher-order functions, which typically occurs while defining functions using
Iris's [fixpoint] operator. *)
Record setoid :=
Setoid { setoid_car :> Type; setoid_equiv : relation setoid_car }.
Arguments setoid_equiv {_} _ _.
Definition myfun (A : Type) (B : setoid) := A B.
Definition myfun_equiv {A B} : relation (myfun A B) :=
pointwise_relation _ setoid_equiv.
Definition myfunS (A : Type) (B : setoid) := Setoid (myfun A B) myfun_equiv.
Section setoid_tests.
Context {A : setoid} (f : A A) (h : A A A).
Context `{!Proper (setoid_equiv ==> setoid_equiv) f,
!Proper (setoid_equiv ==> setoid_equiv ==> setoid_equiv) h}.
Definition setoid_test1 (rec : myfunS nat A) : myfunS nat A :=
λ n, h (f (rec n)) (rec n).
Goal Proper (setoid_equiv ==> setoid_equiv) setoid_test1.
Proof. solve_proper. Qed.
Definition setoid_test2 (rec : myfunS nat (myfunS nat A)) : myfunS nat A :=
λ n, h (f (rec n n)) (rec n n).
Goal Proper (setoid_equiv ==> setoid_equiv) setoid_test2.
Proof. solve_proper. Qed.
Definition setoid_test3 (rec : myfunS nat A) : myfunS nat (myfunS nat A) :=
λ n m, h (f (rec n)) (rec m).
Goal Proper (setoid_equiv ==> setoid_equiv) setoid_test3.
Proof. solve_proper. Qed.
End setoid_tests.
Section map_tests.
Context `{FinMap K M} `{Equiv A}.
Loading