Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
stdpp
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
stdpp
Merge requests
!320
relate size of map to size of its domain
Code
Review changes
Check out branch
Download
Patches
Plain diff
Merged
relate size of map to size of its domain
ralf/dom-size
into
master
Overview
3
Commits
3
Pipelines
3
Changes
3
All threads resolved!
Hide all comments
Merged
Ralf Jung
requested to merge
ralf/dom-size
into
master
3 years ago
Overview
3
Commits
3
Pipelines
3
Changes
3
All threads resolved!
Hide all comments
Expand
0
0
Merge request reports
Compare
master
version 2
efdc3e48
3 years ago
version 1
61141274
3 years ago
master (base)
and
latest version
latest version
551b4882
3 commits,
3 years ago
version 2
efdc3e48
2 commits,
3 years ago
version 1
61141274
1 commit,
3 years ago
3 files
+
34
−
1
Inline
Compare changes
Side-by-side
Inline
Show whitespace changes
Show one file at a time
Files
3
Search (e.g. *.vue) (Ctrl+P)
theories/fin_map_dom.v
+
17
−
0
Options
@@ -165,6 +165,23 @@ Proof.
-
simpl
.
by
rewrite
dom_insert
,
IH
.
Qed
.
(** Alternative definition of [dom] in terms of [map_to_list]. *)
Lemma
dom_alt
{
A
}
(
m
:
M
A
)
:
dom
D
m
≡
list_to_set
(
map_to_list
m
).
*
1
.
Proof
.
rewrite
<-
(
list_to_map_to_list
m
)
at
1
.
rewrite
dom_list_to_map
.
done
.
Qed
.
Lemma
size_dom
`{
!
Elements
K
D
,
!
FinSet
K
D
}
{
A
}
(
m
:
M
A
)
:
size
(
dom
D
m
)
=
size
m
.
Proof
.
rewrite
dom_alt
,
size_list_to_set
.
2
:{
apply
NoDup_fst_map_to_list
.
}
unfold
size
,
map_size
.
rewrite
fmap_length
.
done
.
Qed
.
Lemma
dom_singleton_inv
{
A
}
(
m
:
M
A
)
i
:
dom
D
m
≡
{[
i
]}
→
∃
x
,
m
=
{[
i
:=
x
]}
.
Proof
.
Loading