Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
10
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Iris
stdpp
Commits
fe66a96f
Commit
fe66a96f
authored
May 24, 2014
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Restore memory.v
parent
bb9d75d9
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
8 additions
and
9 deletions
+8
-9
theories/list.v
theories/list.v
+8
-9
No files found.
theories/list.v
View file @
fe66a96f
...
...
@@ -1849,11 +1849,9 @@ Section Forall_Exists.
Definition
Forall_cons_2
:
=
@
Forall_cons
A
.
Lemma
Forall_forall
l
:
Forall
P
l
↔
∀
x
,
x
∈
l
→
P
x
.
Proof
.
split
.
{
induction
1
;
inversion
1
;
subst
;
auto
.
}
intros
Hin
.
induction
l
;
constructor
.
*
apply
Hin
.
constructor
.
*
apply
IHl
.
intros
??.
apply
Hin
.
by
constructor
.
split
;
[
induction
1
;
inversion
1
;
subst
;
auto
|].
intros
Hin
;
induction
l
as
[|
x
l
IH
]
;
constructor
;
[
apply
Hin
;
constructor
|].
apply
IH
.
intros
??.
apply
Hin
.
by
constructor
.
Qed
.
Lemma
Forall_nil
:
Forall
P
[]
↔
True
.
Proof
.
done
.
Qed
.
...
...
@@ -1867,9 +1865,8 @@ Section Forall_Exists.
Proof
.
induction
1
;
simpl
;
auto
.
Qed
.
Lemma
Forall_app
l1
l2
:
Forall
P
(
l1
++
l2
)
↔
Forall
P
l1
∧
Forall
P
l2
.
Proof
.
split
.
*
induction
l1
;
inversion
1
;
intuition
.
*
intros
[??]
;
auto
using
Forall_app_2
.
split
;
[
induction
l1
;
inversion
1
;
intuition
|].
intros
[??]
;
auto
using
Forall_app_2
.
Qed
.
Lemma
Forall_true
l
:
(
∀
x
,
P
x
)
→
Forall
P
l
.
Proof
.
induction
l
;
auto
.
Qed
.
...
...
@@ -1881,7 +1878,9 @@ Section Forall_Exists.
Proof
.
split
;
subst
;
induction
1
;
constructor
(
by
firstorder
auto
).
Qed
.
Lemma
Forall_iff
l
(
Q
:
A
→
Prop
)
:
(
∀
x
,
P
x
↔
Q
x
)
→
Forall
P
l
↔
Forall
Q
l
.
Proof
.
intros
H
.
apply
Forall_proper
.
red
.
apply
H
.
done
.
Qed
.
Proof
.
intros
H
.
apply
Forall_proper
.
red
;
apply
H
.
done
.
Qed
.
Lemma
Forall_not
l
:
length
l
≠
0
→
Forall
(
not
∘
P
)
l
→
¬
Forall
P
l
.
Proof
.
by
destruct
2
;
inversion
1
.
Qed
.
Lemma
Forall_delete
l
i
:
Forall
P
l
→
Forall
P
(
delete
i
l
).
Proof
.
intros
H
.
revert
i
.
by
induction
H
;
intros
[|
i
]
;
try
constructor
.
Qed
.
Lemma
Forall_lookup
l
:
Forall
P
l
↔
∀
i
x
,
l
!!
i
=
Some
x
→
P
x
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment