Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
stdpp
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
stdpp
Commits
fa9f81a2
Commit
fa9f81a2
authored
2 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Add `dom_subseteq_size`, `dom_subset_size`, `map_eq_subseteq_dom`.
parent
ab94b79a
No related branches found
No related tags found
1 merge request
!455
Various tweaks to lists, maps, sets
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
stdpp/fin_map_dom.v
+34
-0
34 additions, 0 deletions
stdpp/fin_map_dom.v
with
34 additions
and
0 deletions
stdpp/fin_map_dom.v
+
34
−
0
View file @
fa9f81a2
...
@@ -187,6 +187,40 @@ Proof.
...
@@ -187,6 +187,40 @@ Proof.
unfold
size
,
map_size
.
rewrite
fmap_length
.
done
.
unfold
size
,
map_size
.
rewrite
fmap_length
.
done
.
Qed
.
Qed
.
Lemma
dom_subseteq_size
{
A
}
(
m1
m2
:
M
A
)
:
dom
m2
⊆
dom
m1
→
size
m2
≤
size
m1
.
Proof
.
revert
m1
.
induction
m2
as
[|
i
x
m2
?
IH
]
using
map_ind
;
intros
m1
Hdom
.
{
rewrite
map_size_empty
.
lia
.
}
rewrite
dom_insert
in
Hdom
.
assert
(
i
∉
dom
m2
)
by
(
by
apply
not_elem_of_dom
)
.
assert
(
i
∈
dom
m1
)
as
[
x'
Hx'
]
%
elem_of_dom
by
set_solver
.
rewrite
<-
(
insert_delete
m1
i
x'
)
by
done
.
rewrite
!
map_size_insert_None
,
<-
Nat
.
succ_le_mono
by
(
by
rewrite
?lookup_delete
)
.
apply
IH
.
rewrite
dom_delete
.
set_solver
.
Qed
.
Lemma
dom_subset_size
{
A
}
(
m1
m2
:
M
A
)
:
dom
m2
⊂
dom
m1
→
size
m2
<
size
m1
.
Proof
.
revert
m1
.
induction
m2
as
[|
i
x
m2
?
IH
]
using
map_ind
;
intros
m1
Hdom
.
{
destruct
m1
as
[|
i
x
m1
?
_]
using
map_ind
.
-
rewrite
!
dom_empty
in
Hdom
.
set_solver
.
-
rewrite
map_size_empty
,
map_size_insert_None
by
done
.
lia
.
}
rewrite
dom_insert
in
Hdom
.
assert
(
i
∉
dom
m2
)
by
(
by
apply
not_elem_of_dom
)
.
assert
(
i
∈
dom
m1
)
as
[
x'
Hx'
]
%
elem_of_dom
by
set_solver
.
rewrite
<-
(
insert_delete
m1
i
x'
)
by
done
.
rewrite
!
map_size_insert_None
,
<-
Nat
.
succ_lt_mono
by
(
by
rewrite
?lookup_delete
)
.
apply
IH
.
rewrite
dom_delete
.
split
;
[
set_solver
|]
.
intros
?
.
destruct
Hdom
as
[?
[]]
.
intros
j
.
destruct
(
decide
(
i
=
j
));
set_solver
.
Qed
.
Lemma
map_eq_subseteq_dom
{
A
}
(
m1
m2
:
M
A
)
:
m1
=
m2
↔
m1
⊆
m2
∧
dom
m2
⊆@
{
D
}
dom
m1
.
Proof
.
split
;
[
by
intros
->
|]
.
intros
[??]
.
apply
map_eq_subseteq_size
.
auto
using
dom_subseteq_size
.
Qed
.
Lemma
dom_singleton_inv
{
A
}
(
m
:
M
A
)
i
:
Lemma
dom_singleton_inv
{
A
}
(
m
:
M
A
)
i
:
dom
m
≡@
{
D
}
{[
i
]}
→
∃
x
,
m
=
{[
i
:=
x
]}
.
dom
m
≡@
{
D
}
{[
i
]}
→
∃
x
,
m
=
{[
i
:=
x
]}
.
Proof
.
Proof
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment