Skip to content
GitLab
Menu
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Iris
stdpp
Commits
eb77524e
Commit
eb77524e
authored
Jul 22, 2016
by
Robbert Krebbers
Browse files
Move sorting stuff to separate file.
parent
1804da3f
Changes
3
Hide whitespace changes
Inline
Sidebyside
theories/collections.v
View file @
eb77524e
...
...
@@ 3,7 +3,7 @@
(** This file collects definitions and theorems on collections. Most
importantly, it implements some tactics to automatically solve goals involving
collections. *)
From
stdpp
Require
Export
base
tactics
orders
.
From
stdpp
Require
Export
orders
list
.
Instance
collection_equiv
`
{
ElemOf
A
C
}
:
Equiv
C
:
=
λ
X
Y
,
∀
x
,
x
∈
X
↔
x
∈
Y
.
...
...
@@ 811,8 +811,7 @@ Section fresh.
Proof
.
induction
1
;
by
constructor
.
Qed
.
Lemma
Forall_fresh_elem_of
X
xs
x
:
Forall_fresh
X
xs
→
x
∈
xs
→
x
∉
X
.
Proof
.
intros
HX
;
revert
x
;
rewrite
<
Forall_forall
.
by
induction
HX
;
constructor
.
intros
HX
;
revert
x
;
rewrite
<
Forall_forall
.
by
induction
HX
;
constructor
.
Qed
.
Lemma
Forall_fresh_alt
X
xs
:
Forall_fresh
X
xs
↔
NoDup
xs
∧
∀
x
,
x
∈
xs
→
x
∉
X
.
...
...
theories/fin_maps.v
View file @
eb77524e
...
...
@@ 5,7 +5,7 @@ finite maps and collects some theory on it. Most importantly, it proves useful
induction principles for finite maps and implements the tactic
[simplify_map_eq] to simplify goals involving finite maps. *)
From
Coq
Require
Import
Permutation
.
From
stdpp
Require
Export
relations
vector
orders
.
From
stdpp
Require
Export
relations
orders
vector
.
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
...
...
theories/orders.v
View file @
eb77524e
(* Copyright (c) 20122015, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** This file collects common properties of preorders and semi lattices. This
theory will mainly be used for the theory on collections and finite maps. *)
From
Coq
Require
Export
Sorted
.
From
stdpp
Require
Export
tactics
list
.
(** * Arbitrary pre, parial and total orders *)
(** Properties about arbitrary pre, partial, and total orders. We do not use
the relation [⊆] because we often have multiple orders on the same structure *)
From
stdpp
Require
Export
tactics
.
Section
orders
.
Context
{
A
}
{
R
:
relation
A
}.
Implicit
Types
X
Y
:
A
.
...
...
@@ 104,203 +100,3 @@ Ltac simplify_order := repeat
assert
(
R
x
z
)
by
(
by
trans
y
)
end
end
.
(** * Sorting *)
(** Merge sort. Adapted from the implementation of Hugo Herbelin in the Coq
standard library, but without using the module system. *)
Section
merge_sort
.
Context
{
A
}
(
R
:
relation
A
)
`
{
∀
x
y
,
Decision
(
R
x
y
)}.
Fixpoint
list_merge
(
l1
:
list
A
)
:
list
A
→
list
A
:
=
fix
list_merge_aux
l2
:
=
match
l1
,
l2
with

[],
_
=>
l2

_
,
[]
=>
l1

x1
::
l1
,
x2
::
l2
=>
if
decide_rel
R
x1
x2
then
x1
::
list_merge
l1
(
x2
::
l2
)
else
x2
::
list_merge_aux
l2
end
.
Global
Arguments
list_merge
!
_
!
_
/.
Local
Notation
stack
:
=
(
list
(
option
(
list
A
))).
Fixpoint
merge_list_to_stack
(
st
:
stack
)
(
l
:
list
A
)
:
stack
:
=
match
st
with

[]
=>
[
Some
l
]

None
::
st
=>
Some
l
::
st

Some
l'
::
st
=>
None
::
merge_list_to_stack
st
(
list_merge
l'
l
)
end
.
Fixpoint
merge_stack
(
st
:
stack
)
:
list
A
:
=
match
st
with

[]
=>
[]

None
::
st
=>
merge_stack
st

Some
l
::
st
=>
list_merge
l
(
merge_stack
st
)
end
.
Fixpoint
merge_sort_aux
(
st
:
stack
)
(
l
:
list
A
)
:
list
A
:
=
match
l
with

[]
=>
merge_stack
st

x
::
l
=>
merge_sort_aux
(
merge_list_to_stack
st
[
x
])
l
end
.
Definition
merge_sort
:
list
A
→
list
A
:
=
merge_sort_aux
[].
End
merge_sort
.
(** ** Properties of the [Sorted] and [StronglySorted] predicate *)
Section
sorted
.
Context
{
A
}
(
R
:
relation
A
).
Lemma
Sorted_StronglySorted
`
{!
Transitive
R
}
l
:
Sorted
R
l
→
StronglySorted
R
l
.
Proof
.
by
apply
Sorted
.
Sorted_StronglySorted
.
Qed
.
Lemma
StronglySorted_unique
`
{!
AntiSymm
(=)
R
}
l1
l2
:
StronglySorted
R
l1
→
StronglySorted
R
l2
→
l1
≡
ₚ
l2
→
l1
=
l2
.
Proof
.
intros
Hl1
;
revert
l2
.
induction
Hl1
as
[
x1
l1
?
IH
Hx1
]
;
intros
l2
Hl2
E
.
{
symmetry
.
by
apply
Permutation_nil
.
}
destruct
Hl2
as
[
x2
l2
?
Hx2
].
{
by
apply
Permutation_nil
in
E
.
}
assert
(
x1
=
x2
)
;
subst
.
{
rewrite
Forall_forall
in
Hx1
,
Hx2
.
assert
(
x2
∈
x1
::
l1
)
as
Hx2'
by
(
by
rewrite
E
;
left
).
assert
(
x1
∈
x2
::
l2
)
as
Hx1'
by
(
by
rewrite
<
E
;
left
).
inversion
Hx1'
;
inversion
Hx2'
;
simplify_eq
;
auto
.
}
f_equal
.
by
apply
IH
,
(
inj
(
x2
::
)).
Qed
.
Lemma
Sorted_unique
`
{!
Transitive
R
,
!
AntiSymm
(=)
R
}
l1
l2
:
Sorted
R
l1
→
Sorted
R
l2
→
l1
≡
ₚ
l2
→
l1
=
l2
.
Proof
.
auto
using
StronglySorted_unique
,
Sorted_StronglySorted
.
Qed
.
Global
Instance
HdRel_dec
x
`
{
∀
y
,
Decision
(
R
x
y
)}
l
:
Decision
(
HdRel
R
x
l
).
Proof
.
refine
match
l
with

[]
=>
left
_

y
::
l
=>
cast_if
(
decide
(
R
x
y
))
end
;
abstract
first
[
by
constructor

by
inversion
1
].
Defined
.
Global
Instance
Sorted_dec
`
{
∀
x
y
,
Decision
(
R
x
y
)}
:
∀
l
,
Decision
(
Sorted
R
l
).
Proof
.
refine
(
fix
go
l
:
=
match
l
return
Decision
(
Sorted
R
l
)
with

[]
=>
left
_

x
::
l
=>
cast_if_and
(
decide
(
HdRel
R
x
l
))
(
go
l
)
end
)
;
clear
go
;
abstract
first
[
by
constructor

by
inversion
1
].
Defined
.
Global
Instance
StronglySorted_dec
`
{
∀
x
y
,
Decision
(
R
x
y
)}
:
∀
l
,
Decision
(
StronglySorted
R
l
).
Proof
.
refine
(
fix
go
l
:
=
match
l
return
Decision
(
StronglySorted
R
l
)
with

[]
=>
left
_

x
::
l
=>
cast_if_and
(
decide
(
Forall
(
R
x
)
l
))
(
go
l
)
end
)
;
clear
go
;
abstract
first
[
by
constructor

by
inversion
1
].
Defined
.
Context
{
B
}
(
f
:
A
→
B
).
Lemma
HdRel_fmap
(
R1
:
relation
A
)
(
R2
:
relation
B
)
x
l
:
(
∀
y
,
R1
x
y
→
R2
(
f
x
)
(
f
y
))
→
HdRel
R1
x
l
→
HdRel
R2
(
f
x
)
(
f
<$>
l
).
Proof
.
destruct
2
;
constructor
;
auto
.
Qed
.
Lemma
Sorted_fmap
(
R1
:
relation
A
)
(
R2
:
relation
B
)
l
:
(
∀
x
y
,
R1
x
y
→
R2
(
f
x
)
(
f
y
))
→
Sorted
R1
l
→
Sorted
R2
(
f
<$>
l
).
Proof
.
induction
2
;
simpl
;
constructor
;
eauto
using
HdRel_fmap
.
Qed
.
Lemma
StronglySorted_fmap
(
R1
:
relation
A
)
(
R2
:
relation
B
)
l
:
(
∀
x
y
,
R1
x
y
→
R2
(
f
x
)
(
f
y
))
→
StronglySorted
R1
l
→
StronglySorted
R2
(
f
<$>
l
).
Proof
.
induction
2
;
csimpl
;
constructor
;
rewrite
?Forall_fmap
;
eauto
using
Forall_impl
.
Qed
.
End
sorted
.
(** ** Correctness of merge sort *)
Section
merge_sort_correct
.
Context
{
A
}
(
R
:
relation
A
)
`
{
∀
x
y
,
Decision
(
R
x
y
)}
`
{!
Total
R
}.
Lemma
list_merge_cons
x1
x2
l1
l2
:
list_merge
R
(
x1
::
l1
)
(
x2
::
l2
)
=
if
decide
(
R
x1
x2
)
then
x1
::
list_merge
R
l1
(
x2
::
l2
)
else
x2
::
list_merge
R
(
x1
::
l1
)
l2
.
Proof
.
done
.
Qed
.
Lemma
HdRel_list_merge
x
l1
l2
:
HdRel
R
x
l1
→
HdRel
R
x
l2
→
HdRel
R
x
(
list_merge
R
l1
l2
).
Proof
.
destruct
1
as
[
x1
l1
IH1
],
1
as
[
x2
l2
IH2
]
;
rewrite
?list_merge_cons
;
simpl
;
repeat
case_decide
;
auto
.
Qed
.
Lemma
Sorted_list_merge
l1
l2
:
Sorted
R
l1
→
Sorted
R
l2
→
Sorted
R
(
list_merge
R
l1
l2
).
Proof
.
intros
Hl1
.
revert
l2
.
induction
Hl1
as
[
x1
l1
IH1
]
;
induction
1
as
[
x2
l2
IH2
]
;
rewrite
?list_merge_cons
;
simpl
;
repeat
case_decide
;
constructor
;
eauto
using
HdRel_list_merge
,
HdRel_cons
,
total_not
.
Qed
.
Lemma
merge_Permutation
l1
l2
:
list_merge
R
l1
l2
≡
ₚ
l1
++
l2
.
Proof
.
revert
l2
.
induction
l1
as
[
x1
l1
IH1
]
;
intros
l2
;
induction
l2
as
[
x2
l2
IH2
]
;
rewrite
?list_merge_cons
;
simpl
;
repeat
case_decide
;
auto
.

by
rewrite
(
right_id_L
[]
(++)).

by
rewrite
IH2
,
Permutation_middle
.
Qed
.
Local
Notation
stack
:
=
(
list
(
option
(
list
A
))).
Inductive
merge_stack_Sorted
:
stack
→
Prop
:
=

merge_stack_Sorted_nil
:
merge_stack_Sorted
[]

merge_stack_Sorted_cons_None
st
:
merge_stack_Sorted
st
→
merge_stack_Sorted
(
None
::
st
)

merge_stack_Sorted_cons_Some
l
st
:
Sorted
R
l
→
merge_stack_Sorted
st
→
merge_stack_Sorted
(
Some
l
::
st
).
Fixpoint
merge_stack_flatten
(
st
:
stack
)
:
list
A
:
=
match
st
with

[]
=>
[]

None
::
st
=>
merge_stack_flatten
st

Some
l
::
st
=>
l
++
merge_stack_flatten
st
end
.
Lemma
Sorted_merge_list_to_stack
st
l
:
merge_stack_Sorted
st
→
Sorted
R
l
→
merge_stack_Sorted
(
merge_list_to_stack
R
st
l
).
Proof
.
intros
Hst
.
revert
l
.
induction
Hst
;
repeat
constructor
;
naive_solver
auto
using
Sorted_list_merge
.
Qed
.
Lemma
merge_list_to_stack_Permutation
st
l
:
merge_stack_flatten
(
merge_list_to_stack
R
st
l
)
≡
ₚ
l
++
merge_stack_flatten
st
.
Proof
.
revert
l
.
induction
st
as
[[
l'
]
st
IH
]
;
intros
l
;
simpl
;
auto
.
by
rewrite
IH
,
merge_Permutation
,
(
assoc_L
_
),
(
comm
(++)
l
).
Qed
.
Lemma
Sorted_merge_stack
st
:
merge_stack_Sorted
st
→
Sorted
R
(
merge_stack
R
st
).
Proof
.
induction
1
;
simpl
;
auto
using
Sorted_list_merge
.
Qed
.
Lemma
merge_stack_Permutation
st
:
merge_stack
R
st
≡
ₚ
merge_stack_flatten
st
.
Proof
.
induction
st
as
[[]
?
IH
]
;
intros
;
simpl
;
auto
.
by
rewrite
merge_Permutation
,
IH
.
Qed
.
Lemma
Sorted_merge_sort_aux
st
l
:
merge_stack_Sorted
st
→
Sorted
R
(
merge_sort_aux
R
st
l
).
Proof
.
revert
st
.
induction
l
;
simpl
;
auto
using
Sorted_merge_stack
,
Sorted_merge_list_to_stack
.
Qed
.
Lemma
merge_sort_aux_Permutation
st
l
:
merge_sort_aux
R
st
l
≡
ₚ
merge_stack_flatten
st
++
l
.
Proof
.
revert
st
.
induction
l
as
[??
IH
]
;
simpl
;
intros
.

by
rewrite
(
right_id_L
[]
(++)),
merge_stack_Permutation
.

rewrite
IH
,
merge_list_to_stack_Permutation
;
simpl
.
by
rewrite
Permutation_middle
.
Qed
.
Lemma
Sorted_merge_sort
l
:
Sorted
R
(
merge_sort
R
l
).
Proof
.
apply
Sorted_merge_sort_aux
.
by
constructor
.
Qed
.
Lemma
merge_sort_Permutation
l
:
merge_sort
R
l
≡
ₚ
l
.
Proof
.
unfold
merge_sort
.
by
rewrite
merge_sort_aux_Permutation
.
Qed
.
Lemma
StronglySorted_merge_sort
`
{!
Transitive
R
}
l
:
StronglySorted
R
(
merge_sort
R
l
).
Proof
.
auto
using
Sorted_StronglySorted
,
Sorted_merge_sort
.
Qed
.
End
merge_sort_correct
.
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment