Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
7
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Iris
stdpp
Commits
cee2597b
Commit
cee2597b
authored
Jun 06, 2018
by
Ralf Jung
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
show that tele_app ∘ tele_bind is an identity; remove unused strange fmap instance
parent
49b04e85
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
19 additions
and
13 deletions
+19
-13
theories/telescopes.v
theories/telescopes.v
+19
-13
No files found.
theories/telescopes.v
View file @
cee2597b
...
...
@@ -85,17 +85,6 @@ Lemma tele_fmap_app {T U} {TT : tele} (F : T → U) (t : TT -t> T) (x : TT) :
(
F
<$>
t
)
x
=
F
(
t
x
).
Proof
.
apply
tele_map_app
.
Qed
.
Global
Instance
tele_fmap2
{
TT1
TT2
:
tele
}
:
FMap
(
tele_fun
TT1
∘
tele_fun
TT2
)
:
=
λ
T
U
,
tele_map
∘
tele_map
.
Lemma
tele_fmap2_app
{
T
U
}
{
TT1
TT2
:
tele
}
(
F
:
T
→
U
)
(
t
:
TT1
-
t
>
TT2
-
t
>
T
)
(
x
:
TT1
)
(
y
:
TT2
)
:
(
F
<$>
t
)
x
y
=
F
(
t
x
y
).
Proof
.
unfold
fmap
,
tele_fmap2
.
simpl
.
rewrite
!
tele_map_app
.
done
.
Qed
.
(** Operate below [tele_fun]s with argument telescope [TT]. *)
Fixpoint
tele_bind
{
U
}
{
TT
:
tele
}
:
(
TT
→
U
)
→
TT
-
t
>
U
:
=
match
TT
as
TT
return
(
TT
→
U
)
→
TT
-
t
>
U
with
...
...
@@ -105,8 +94,22 @@ Fixpoint tele_bind {U} {TT : tele} : (TT → U) → TT -t> U :=
end
.
Arguments
tele_bind
{
_
!
_
}
_
/.
(** A function that looks funny. *)
Definition
tele_arg_id
(
TT
:
tele
)
:
TT
-
t
>
TT
:
=
tele_bind
id
.
(* Show that tele_app ∘ tele_bind is the identity. *)
Lemma
tele_app_bind
{
U
}
{
TT
:
tele
}
(
f
:
TT
→
U
)
x
:
(
tele_app
$
tele_bind
f
)
x
=
f
x
.
Proof
.
induction
TT
as
[|
X
b
IH
]
;
simpl
in
*.
-
rewrite
(
tele_arg_O_inv
x
).
done
.
-
destruct
(
tele_arg_S_inv
x
)
as
[
x'
[
a'
->]].
simpl
.
rewrite
IH
.
done
.
Qed
.
(** We can define the identity function of the [-t>] function space. *)
Definition
tele_id
{
TT
:
tele
}
:
TT
-
t
>
TT
:
=
tele_bind
id
.
Lemma
tele_id_eq
{
TT
:
tele
}
(
x
:
TT
)
:
tele_id
x
=
x
.
Proof
.
unfold
tele_id
.
rewrite
tele_app_bind
.
done
.
Qed
.
(** Notation *)
Notation
"'[tele' x .. z ]"
:
=
...
...
@@ -122,6 +125,9 @@ Notation "'[tele_arg' ]" := (TargO)
(
format
"[tele_arg ]"
).
(** Notation-compatible telescope mapping *)
(* This adds (tele_app ∘ tele_bind), which is an identity function, around every
binder so that, after simplifying, this matches the way we typically write
notations involving telescopes. *)
Notation
"'λ..' x .. y , e"
:
=
(
tele_app
$
tele_bind
(
λ
x
,
..
(
tele_app
$
tele_bind
(
λ
y
,
e
))
..
))
(
at
level
200
,
x
binder
,
y
binder
,
right
associativity
,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment