Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Iris
stdpp
Commits
cc10608d
Commit
cc10608d
authored
Nov 18, 2015
by
Robbert Krebbers
Browse files
Block some annoying reductions that lead to too many unfoldings.
parent
c95faa0d
Changes
2
Hide whitespace changes
Inline
Side-by-side
theories/co_pset.v
View file @
cc10608d
...
...
@@ -151,12 +151,14 @@ Instance coPset_elem_of : ElemOf positive coPset := λ p X, e_of p (`X).
Instance
coPset_empty
:
Empty
coPset
:
=
coPLeaf
false
↾
I
.
Definition
coPset_all
:
coPset
:
=
coPLeaf
true
↾
I
.
Instance
coPset_union
:
Union
coPset
:
=
λ
X
Y
,
(
`
X
∪
`
Y
)
↾
coPset_union_wf
_
_
(
proj2_sig
X
)
(
proj2_sig
Y
).
let
(
t1
,
Ht1
)
:
=
X
in
let
(
t2
,
Ht2
)
:
=
Y
in
(
t1
∪
t2
)
↾
coPset_union_wf
_
_
Ht1
Ht2
.
Instance
coPset_intersection
:
Intersection
coPset
:
=
λ
X
Y
,
(
`
X
∩
`
Y
)
↾
coPset_intersection_wf
_
_
(
proj2_sig
X
)
(
proj2_sig
Y
).
let
(
t1
,
Ht1
)
:
=
X
in
let
(
t2
,
Ht2
)
:
=
Y
in
(
t1
∩
t2
)
↾
coPset_intersection_wf
_
_
Ht1
Ht2
.
Instance
coPset_difference
:
Difference
coPset
:
=
λ
X
Y
,
(
`
X
∩
coPset_opp_raw
(
`
Y
))
↾
coPset_intersection_wf
_
_
(
proj2_sig
X
)
(
coPset_opp_wf
_
).
let
(
t1
,
Ht1
)
:
=
X
in
let
(
t2
,
Ht2
)
:
=
Y
in
(
t1
∩
coPset_opp_raw
t2
)
↾
coPset_intersection_wf
_
_
Ht1
(
coPset_opp_wf
_
).
Instance
coPset_elem_of_dec
(
p
:
positive
)
(
X
:
coPset
)
:
Decision
(
p
∈
X
)
:
=
_
.
Instance
coPset_collection
:
Collection
positive
coPset
.
...
...
@@ -164,11 +166,11 @@ Proof.
split
;
[
split
|
|].
*
by
intros
??.
*
intros
p
q
.
apply
elem_of_coPset_singleton
.
*
intros
X
Y
p
;
unfold
elem_of
,
coPset_elem_of
,
coPset_union
;
simpl
.
*
intros
[
t
]
[
t'
]
p
;
unfold
elem_of
,
coPset_elem_of
,
coPset_union
;
simpl
.
by
rewrite
elem_of_coPset_union
,
orb_True
.
*
intros
X
Y
p
;
unfold
elem_of
,
coPset_elem_of
,
coPset_intersection
;
simpl
.
*
intros
[
t
]
[
t'
]
p
;
unfold
elem_of
,
coPset_elem_of
,
coPset_intersection
;
simpl
.
by
rewrite
elem_of_coPset_intersection
,
andb_True
.
*
intros
X
Y
p
;
unfold
elem_of
,
coPset_elem_of
,
coPset_difference
;
simpl
.
*
intros
[
t
]
[
t'
]
p
;
unfold
elem_of
,
coPset_elem_of
,
coPset_difference
;
simpl
.
by
rewrite
elem_of_coPset_intersection
,
elem_of_coPset_opp
,
andb_True
,
negb_True
.
Qed
.
...
...
@@ -208,8 +210,10 @@ Lemma coPset_l_wf t : coPset_wf (coPset_l_raw t).
Proof
.
induction
t
as
[[]|]
;
simpl
;
auto
.
Qed
.
Lemma
coPset_r_wf
t
:
coPset_wf
(
coPset_r_raw
t
).
Proof
.
induction
t
as
[[]|]
;
simpl
;
auto
.
Qed
.
Definition
coPset_l
(
X
:
coPset
)
:
coPset
:
=
coPset_l_raw
(
`
X
)
↾
coPset_l_wf
_
.
Definition
coPset_r
(
X
:
coPset
)
:
coPset
:
=
coPset_r_raw
(
`
X
)
↾
coPset_r_wf
_
.
Definition
coPset_l
(
X
:
coPset
)
:
coPset
:
=
let
(
t
,
Ht
)
:
=
X
in
coPset_l_raw
t
↾
coPset_l_wf
_
.
Definition
coPset_r
(
X
:
coPset
)
:
coPset
:
=
let
(
t
,
Ht
)
:
=
X
in
coPset_r_raw
t
↾
coPset_r_wf
_
.
Lemma
coPset_lr_disjoint
X
:
coPset_l
X
∩
coPset_r
X
=
∅
.
Proof
.
...
...
@@ -255,7 +259,7 @@ Proof.
rewrite
?andb_True
;
rewrite
?andb_True
in
IHl
,
IHr
;
intuition
.
Qed
.
Definition
to_coPset
(
X
:
Pset
)
:
coPset
:
=
to_coPset_raw
(
pmap_car
(
mapset_car
X
))
↾
to_coPset_raw_wf
_
(
pmap_prf
_
)
.
let
(
m
)
:
=
X
in
let
(
t
,
Ht
)
:
=
m
in
to_coPset_raw
t
↾
to_coPset_raw_wf
_
Ht
.
Lemma
elem_of_to_coPset
X
i
:
i
∈
to_coPset
X
↔
i
∈
X
.
Proof
.
destruct
X
as
[[
t
Ht
]]
;
change
(
e_of
i
(
to_coPset_raw
t
)
↔
t
!!
i
=
Some
()).
...
...
theories/pmap.v
View file @
cc10608d
...
...
@@ -274,15 +274,15 @@ Instance Pmap_eq_dec `{∀ x y : A, Decision (x = y)}
Instance
Pempty
{
A
}
:
Empty
(
Pmap
A
)
:
=
PMap
∅
I
.
Instance
Plookup
{
A
}
:
Lookup
positive
A
(
Pmap
A
)
:
=
λ
i
m
,
pmap_car
m
!!
i
.
Instance
Ppartial_alter
{
A
}
:
PartialAlter
positive
A
(
Pmap
A
)
:
=
λ
f
i
m
,
PMap
(
partial_alter
f
i
(
pmap_car
m
)
)
(
Ppartial_alter_wf
f
i
_
(
pmap_prf
m
)
).
let
(
t
,
Ht
)
:
=
m
in
PMap
(
partial_alter
f
i
t
)
(
Ppartial_alter_wf
f
i
_
Ht
).
Instance
Pfmap
:
FMap
Pmap
:
=
λ
A
B
f
m
,
PMap
(
f
<$>
pmap_car
m
)
(
Pfmap_wf
f
_
(
pmap_prf
m
)
).
let
(
t
,
Ht
)
:
=
m
in
PMap
(
f
<$>
t
)
(
Pfmap_wf
f
_
Ht
).
Instance
Pto_list
{
A
}
:
FinMapToList
positive
A
(
Pmap
A
)
:
=
λ
m
,
Pto_list_raw
1
(
pmap_car
m
)
[].
let
(
t
,
Ht
)
:
=
m
in
Pto_list_raw
1
t
[].
Instance
Pomap
:
OMap
Pmap
:
=
λ
A
B
f
m
,
PMap
(
omap
f
(
pmap_car
m
)
)
(
Pomap_wf
f
_
(
pmap_prf
m
)
).
let
(
t
,
Ht
)
:
=
m
in
PMap
(
omap
f
t
)
(
Pomap_wf
f
_
Ht
).
Instance
Pmerge
:
Merge
Pmap
:
=
λ
A
B
C
f
m1
m2
,
PMap
_
(
Pmerge_wf
f
_
_
(
pmap_prf
m1
)
(
pmap_prf
m2
)
).
let
(
t1
,
Ht1
)
:
=
m1
in
let
(
t2
,
Ht2
)
:
=
m2
in
PMap
_
(
Pmerge_wf
f
_
_
Ht1
Ht2
).
Instance
Pmap_finmap
:
FinMap
positive
Pmap
.
Proof
.
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment