Commit cab3033b authored by Robbert Krebbers's avatar Robbert Krebbers

Move stuff out of sections that does not depend on the section variables.

parent b084730a
......@@ -2082,11 +2082,18 @@ Proof.
end); clear go; intuition.
Defined.
Definition Forall_nil_2 := @Forall_nil A.
Definition Forall_cons_2 := @Forall_cons A.
Global Instance Forall_proper:
Proper (pointwise_relation _ () ==> (=) ==> ()) (@Forall A).
Proof. split; subst; induction 1; constructor; by firstorder auto. Qed.
Global Instance Exists_proper:
Proper (pointwise_relation _ () ==> (=) ==> ()) (@Exists A).
Proof. split; subst; induction 1; constructor; by firstorder auto. Qed.
Section Forall_Exists.
Context (P : A Prop).
Definition Forall_nil_2 := @Forall_nil A.
Definition Forall_cons_2 := @Forall_cons A.
Lemma Forall_forall l : Forall P l x, x l P x.
Proof.
split; [induction 1; inversion 1; subst; auto|].
......@@ -2113,9 +2120,6 @@ Section Forall_Exists.
Lemma Forall_impl (Q : A Prop) l :
Forall P l ( x, P x Q x) Forall Q l.
Proof. intros H ?. induction H; auto. Defined.
Global Instance Forall_proper:
Proper (pointwise_relation _ () ==> (=) ==> ()) (@Forall A).
Proof. split; subst; induction 1; constructor; by firstorder auto. Qed.
Lemma Forall_iff l (Q : A Prop) :
( x, P x Q x) Forall P l Forall Q l.
Proof. intros H. apply Forall_proper. red; apply H. done. Qed.
......@@ -2226,9 +2230,7 @@ Section Forall_Exists.
Lemma Exists_impl (Q : A Prop) l :
Exists P l ( x, P x Q x) Exists Q l.
Proof. intros H ?. induction H; auto. Defined.
Global Instance Exists_proper:
Proper (pointwise_relation _ () ==> (=) ==> ()) (@Exists A).
Proof. split; subst; induction 1; constructor; by firstorder auto. Qed.
Lemma Exists_not_Forall l : Exists (not P) l ¬Forall P l.
Proof. induction 1; inversion_clear 1; contradiction. Qed.
Lemma Forall_not_Exists l : Forall (not P) l ¬Exists P l.
......@@ -2291,7 +2293,26 @@ Proof.
destruct Hj; subst. auto with lia.
Qed.
Lemma Forall2_same_length {A B} (l : list A) (k : list B) :
Forall2 (λ _ _, True) l k length l = length k.
Proof.
split; [by induction 1; f_equal/=|].
revert k. induction l; intros [|??] ?; simplify_eq/=; auto.
Qed.
(** ** Properties of the [Forall2] predicate *)
Lemma Forall_Forall2 {A} (Q : A A Prop) l :
Forall (λ x, Q x x) l Forall2 Q l l.
Proof. induction 1; constructor; auto. Qed.
Lemma Forall2_forall `{Inhabited A} B C (Q : A B C Prop) l k :
Forall2 (λ x y, z, Q z x y) l k z, Forall2 (Q z) l k.
Proof.
split; [induction 1; constructor; auto|].
intros Hlk. induction (Hlk inhabitant) as [|x y l k _ _ IH]; constructor.
- intros z. by feed inversion (Hlk z).
- apply IH. intros z. by feed inversion (Hlk z).
Qed.
Section Forall2.
Context {A B} (P : A B Prop).
Implicit Types x : A.
......@@ -2299,12 +2320,6 @@ Section Forall2.
Implicit Types l : list A.
Implicit Types k : list B.
Lemma Forall2_same_length l k :
Forall2 (λ _ _, True) l k length l = length k.
Proof.
split; [by induction 1; f_equal/=|].
revert k. induction l; intros [|??] ?; simplify_eq/=; auto.
Qed.
Lemma Forall2_length l k : Forall2 P l k length l = length k.
Proof. by induction 1; f_equal/=. Qed.
Lemma Forall2_length_l l k n : Forall2 P l k length l = n length k = n.
......@@ -2329,18 +2344,7 @@ Section Forall2.
Proof.
intros H. revert k2. induction H; inversion_clear 1; intros; f_equal; eauto.
Qed.
Lemma Forall2_forall `{Inhabited C} (Q : C A B Prop) l k :
Forall2 (λ x y, z, Q z x y) l k z, Forall2 (Q z) l k.
Proof.
split; [induction 1; constructor; auto|].
intros Hlk. induction (Hlk inhabitant) as [|x y l k _ _ IH]; constructor.
- intros z. by feed inversion (Hlk z).
- apply IH. intros z. by feed inversion (Hlk z).
Qed.
Lemma Forall_Forall2 (Q : A A Prop) l :
Forall (λ x, Q x x) l Forall2 Q l l.
Proof. induction 1; constructor; auto. Qed.
Lemma Forall2_Forall_l (Q : A Prop) l k :
Forall2 P l k Forall (λ y, x, P x y Q x) k Forall Q l.
Proof. induction 1; inversion_clear 1; eauto. Qed.
......@@ -2801,11 +2805,12 @@ Section setoid.
End setoid.
(** * Properties of the monadic operations *)
Lemma list_fmap_id {A} (l : list A) : id <$> l = l.
Proof. induction l; f_equal/=; auto. Qed.
Section fmap.
Context {A B : Type} (f : A B).
Lemma list_fmap_id (l : list A) : id <$> l = l.
Proof. induction l; f_equal/=; auto. Qed.
Lemma list_fmap_compose {C} (g : B C) l : g f <$> l = g <$> f <$> l.
Proof. induction l; f_equal/=; auto. Qed.
Lemma list_fmap_ext (g : A B) (l1 l2 : list A) :
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment