Commit c04c1337 authored by Robbert Krebbers's avatar Robbert Krebbers

Prove `pred_infinite (λ _: A, True)` for `A` infinite.

parent 3184ef61
......@@ -940,6 +940,11 @@ Section pred_finite_infinite.
Lemma pred_not_infinite_finite {A} (P : A Prop) :
pred_infinite P pred_finite P False.
Proof. intros Hinf [xs ?]. destruct (Hinf xs). set_solver. Qed.
Lemma pred_infinite_True `{Infinite A} : pred_infinite (λ _: A, True).
intros xs. exists (fresh xs). split; [done|]. apply infinite_is_fresh.
End pred_finite_infinite.
Section set_finite_infinite.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment