Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
stdpp
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
stdpp
Commits
b390cc24
Commit
b390cc24
authored
4 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Results about `set_infinite` on `coPset`.
parent
e8ac5908
No related branches found
Branches containing commit
No related tags found
1 merge request
!230
coPset: some lemmas about infinity
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/coPset.v
+17
-0
17 additions, 0 deletions
theories/coPset.v
with
17 additions
and
0 deletions
theories/coPset.v
+
17
−
0
View file @
b390cc24
...
@@ -341,6 +341,23 @@ Proof.
...
@@ -341,6 +341,23 @@ Proof.
apply
coPset_finite_spec
;
destruct
X
as
[[[
t
?]]];
apply
Pset_to_coPset_raw_finite
.
apply
coPset_finite_spec
;
destruct
X
as
[[[
t
?]]];
apply
Pset_to_coPset_raw_finite
.
Qed
.
Qed
.
(** * Infinite sets *)
Lemma
coPset_infinite_finite
(
X
:
coPset
)
:
set_infinite
X
↔
¬
set_finite
X
.
Proof
.
split
;
[
intros
??;
by
apply
(
set_not_infinite_finite
X
)|]
.
intros
Hfin
xs
.
exists
(
coPpick
(
X
∖
list_to_set
xs
))
.
cut
(
coPpick
(
X
∖
list_to_set
xs
)
∈
X
∖
list_to_set
xs
);
[
set_solver
|]
.
apply
coPpick_elem_of
;
intros
Hfin'
.
apply
Hfin
,
(
difference_finite_inv
_
(
list_to_set
xs
)),
Hfin'
.
apply
list_to_set_finite
.
Qed
.
Lemma
coPset_finite_infinite
(
X
:
coPset
)
:
set_finite
X
↔
¬
set_infinite
X
.
Proof
.
rewrite
coPset_infinite_finite
.
split
;
[
tauto
|
apply
dec_stable
]
.
Qed
.
Global
Instance
coPset_infinite_dec
(
X
:
coPset
)
:
Decision
(
set_infinite
X
)
.
Proof
.
refine
(
cast_if
(
decide
(
¬
set_finite
X
)));
by
rewrite
coPset_infinite_finite
.
Defined
.
(** * Domain of finite maps *)
(** * Domain of finite maps *)
Global
Instance
Pmap_dom_coPset
{
A
}
:
Dom
(
Pmap
A
)
coPset
:=
λ
m
,
Pset_to_coPset
(
dom
_
m
)
.
Global
Instance
Pmap_dom_coPset
{
A
}
:
Dom
(
Pmap
A
)
coPset
:=
λ
m
,
Pset_to_coPset
(
dom
_
m
)
.
Global
Instance
Pmap_dom_coPset_spec
:
FinMapDom
positive
Pmap
coPset
.
Global
Instance
Pmap_dom_coPset_spec
:
FinMapDom
positive
Pmap
coPset
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment