Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
S
stdpp
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
49
Issues
49
List
Boards
Labels
Service Desk
Milestones
Merge Requests
3
Merge Requests
3
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Iris
stdpp
Commits
98e61928
Commit
98e61928
authored
Sep 04, 2014
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Strengthen induction lemma for reflexive transitive closure.
parent
6907a08a
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
9 additions
and
6 deletions
+9
-6
theories/ars.v
theories/ars.v
+9
-6
No files found.
theories/ars.v
View file @
98e61928
...
@@ -61,19 +61,22 @@ Section rtc.
...
@@ -61,19 +61,22 @@ Section rtc.
Lemma
rtc_inv
x
z
:
rtc
R
x
z
→
x
=
z
∨
∃
y
,
R
x
y
∧
rtc
R
y
z
.
Lemma
rtc_inv
x
z
:
rtc
R
x
z
→
x
=
z
∨
∃
y
,
R
x
y
∧
rtc
R
y
z
.
Proof
.
inversion_clear
1
;
eauto
.
Qed
.
Proof
.
inversion_clear
1
;
eauto
.
Qed
.
Lemma
rtc_ind_r_weak
(
P
:
A
→
A
→
Prop
)
Lemma
rtc_ind_r
(
P
:
A
→
A
→
Prop
)
(
Prefl
:
∀
x
,
P
x
x
)
(
Pstep
:
∀
x
y
z
,
rtc
R
x
y
→
R
y
z
→
P
x
y
→
P
x
z
)
:
(
Prefl
:
∀
x
,
P
x
x
)
(
Pstep
:
∀
x
y
z
,
rtc
R
x
y
→
R
y
z
→
P
x
y
→
P
x
z
)
:
∀
x
z
,
rtc
R
x
z
→
P
x
z
.
∀
x
z
,
rtc
R
x
z
→
P
x
z
.
Proof
.
Proof
.
cut
(
∀
y
z
,
rtc
R
y
z
→
∀
x
,
rtc
R
x
y
→
P
x
y
→
P
x
z
).
cut
(
∀
y
z
,
rtc
R
y
z
→
∀
x
,
rtc
R
x
y
→
P
x
y
→
P
x
z
).
{
eauto
using
rtc_refl
.
}
{
eauto
using
rtc_refl
.
}
induction
1
;
eauto
using
rtc_r
.
induction
1
;
eauto
using
rtc_r
.
Qed
.
Qed
.
Lemma
rtc_ind_r
(
P
:
A
→
Prop
)
(
x
:
A
)
(
Prefl
:
P
x
)
(
Pstep
:
∀
y
z
,
rtc
R
x
y
→
R
y
z
→
P
y
→
P
z
)
:
∀
z
,
rtc
R
x
z
→
P
z
.
Proof
.
intros
z
p
.
revert
x
z
p
Prefl
Pstep
.
refine
(
rtc_ind_r_weak
_
_
_
)
;
eauto
.
Qed
.
Lemma
rtc_inv_r
x
z
:
rtc
R
x
z
→
x
=
z
∨
∃
y
,
rtc
R
x
y
∧
R
y
z
.
Lemma
rtc_inv_r
x
z
:
rtc
R
x
z
→
x
=
z
∨
∃
y
,
rtc
R
x
y
∧
R
y
z
.
Proof
.
revert
x
z
.
apply
rtc_ind_r
;
eauto
.
Qed
.
Proof
.
revert
z
.
apply
rtc_ind_r
;
eauto
.
Qed
.
Lemma
nsteps_once
x
y
:
R
x
y
→
nsteps
R
1
x
y
.
Lemma
nsteps_once
x
y
:
R
x
y
→
nsteps
R
1
x
y
.
Proof
.
eauto
with
ars
.
Qed
.
Proof
.
eauto
with
ars
.
Qed
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment