Commit 8dfc9983 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Prove `Sorted_reverse`.

parent bdafed6b
Pipeline #18037 passed with stage
in 8 minutes and 46 seconds
......@@ -41,6 +41,11 @@ Section merge_sort.
Definition merge_sort : list A list A := merge_sort_aux [].
End merge_sort.
(** Helper definition for [Sorted_reverse] below *)
Inductive TlRel {A} (R : relation A) (a : A) : list A Prop :=
| TlRel_nil : TlRel R a []
| TlRel_cons b l : R b a TlRel R a (l ++ [b]).
(** ** Properties of the [Sorted] and [StronglySorted] predicate *)
Section sorted.
Context {A} (R : relation A).
......@@ -112,8 +117,28 @@ Section sorted.
rewrite ?Forall_fmap; eauto using Forall_impl.
End fmap.
Lemma HdRel_reverse l x : HdRel R x l TlRel (flip R) x (reverse l).
Proof. destruct 1; rewrite ?reverse_cons; by constructor. Qed.
Lemma Sorted_snoc l x : Sorted R l TlRel R x l Sorted R (l ++ [x]).
induction 1 as [|y l Hsort IH Hhd]; intros Htl; simpl.
{ repeat constructor. }
constructor. apply IH.
- inversion Htl as [|? [|??]]; simplify_list_eq; by constructor.
- destruct Hhd; constructor; [|done].
inversion Htl as [|? [|??]]; by try discriminate_list.
End sorted.
Lemma Sorted_reverse {A} (R : relation A) l :
Sorted R l Sorted (flip R) (reverse l).
induction 1; rewrite ?reverse_nil, ?reverse_cons;
auto using Sorted_snoc, HdRel_reverse.
(** ** Correctness of merge sort *)
Section merge_sort_correct.
Context {A} (R : relation A) `{ x y, Decision (R x y)}.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment