Skip to content
Snippets Groups Projects
Commit 8d8a0f0a authored by Ralf Jung's avatar Ralf Jung
Browse files

rename seq_S_end_app -> seq_S_snoc

parent d5b1ae21
No related branches found
No related tags found
1 merge request!211upstream some list_numbers lemmas from Perennial
...@@ -67,7 +67,7 @@ Section seq. ...@@ -67,7 +67,7 @@ Section seq.
Qed. Qed.
Lemma NoDup_seq j n : NoDup (seq j n). Lemma NoDup_seq j n : NoDup (seq j n).
Proof. apply NoDup_ListNoDup, seq_NoDup. Qed. Proof. apply NoDup_ListNoDup, seq_NoDup. Qed.
Lemma seq_S_end_app j n : seq j (S n) = seq j n ++ [j + n]. Lemma seq_S_snoc j n : seq j (S n) = seq j n ++ [j + n].
Proof. Proof.
revert j. induction n as [|n IH]; intros j; simpl in *; f_equal; [done |]. revert j. induction n as [|n IH]; intros j; simpl in *; f_equal; [done |].
by rewrite IH, Nat.add_succ_r. by rewrite IH, Nat.add_succ_r.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment