Skip to content
Snippets Groups Projects
Commit 8b97a7e0 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Add `gmultiset_singleton_subseteq`.

parent f0d5ebf0
No related branches found
No related tags found
1 merge request!306Make singleton/`⊆` lemmas consistent with Iris's singleton/`≼`
...@@ -570,6 +570,15 @@ Section more_lemmas. ...@@ -570,6 +570,15 @@ Section more_lemmas.
Lemma gmultiset_singleton_subseteq_l x X : {[+ x +]} X x X. Lemma gmultiset_singleton_subseteq_l x X : {[+ x +]} X x X.
Proof. multiset_solver. Qed. Proof. multiset_solver. Qed.
Lemma gmultiset_singleton_subseteq x y :
{[+ x +]} ⊆@{gmultiset A} {[+ y +]} x = y.
Proof.
split; [|multiset_solver].
(* FIXME: [multiset_solver] should solve this *)
intros Hxy. specialize (Hxy x).
rewrite multiplicity_singleton, multiplicity_singleton' in Hxy.
case_decide; [done|lia].
Qed.
Lemma gmultiset_elem_of_subseteq X1 X2 x : x X1 X1 X2 x X2. Lemma gmultiset_elem_of_subseteq X1 X2 x : x X1 X1 X2 x X2.
Proof. multiset_solver. Qed. Proof. multiset_solver. Qed.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment