Skip to content
Snippets Groups Projects
Commit 7921671c authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Add `singleton_subseteq_l` and `singleton_subseteq`.

parent 8b97a7e0
No related branches found
No related tags found
1 merge request!306Make singleton/`⊆` lemmas consistent with Iris's singleton/`≼`
Pipeline #51140 passed
......@@ -471,6 +471,11 @@ Section semi_set.
Lemma not_elem_of_singleton_2 x y : x y x ({[ y ]} : C).
Proof. apply not_elem_of_singleton. Qed.
Lemma singleton_subseteq_l x X : {[ x ]} X x X.
Proof. set_solver. Qed.
Lemma singleton_subseteq x y : {[ x ]} ⊆@{C} {[ y ]} x = y.
Proof. set_solver. Qed.
(** Disjointness *)
Lemma elem_of_disjoint X Y : X ## Y x, x X x Y False.
Proof. done. Qed.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment