Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
stdpp
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
stdpp
Commits
65dec1a0
Commit
65dec1a0
authored
2 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Add scalar multiplication for multisets.
parent
bb1d27f6
No related branches found
No related tags found
1 merge request
!452
Add scalar multiplication for multisets.
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
stdpp/gmultiset.v
+73
-1
73 additions, 1 deletion
stdpp/gmultiset.v
tests/multiset_solver.v
+18
-1
18 additions, 1 deletion
tests/multiset_solver.v
with
91 additions
and
2 deletions
stdpp/gmultiset.v
+
73
−
1
View file @
65dec1a0
...
...
@@ -48,6 +48,9 @@ Section definitions.
let
(
X
)
:=
X
in
let
(
Y
)
:=
Y
in
GMultiSet
$
difference_with
(
λ
x
y
,
let
z
:=
x
-
y
in
guard
(
0
<
z
);
Some
(
pred
z
))
X
Y
.
Global
Instance
gmultiset_scalar_mul
:
ScalarMul
nat
(
gmultiset
A
)
:=
λ
n
X
,
let
(
X
)
:=
X
in
GMultiSet
$
match
n
with
0
=>
∅
|
S
n'
=>
fmap
(
λ
m
,
m
+
n'
*
S
m
)
X
end
.
Global
Instance
gmultiset_dom
:
Dom
(
gmultiset
A
)
(
gset
A
)
:=
λ
X
,
let
(
X
)
:=
X
in
dom
X
.
...
...
@@ -56,7 +59,7 @@ End definitions.
Typeclasses
Opaque
gmultiset_elem_of
gmultiset_subseteq
.
Typeclasses
Opaque
gmultiset_elements
gmultiset_size
gmultiset_empty
.
Typeclasses
Opaque
gmultiset_singleton
gmultiset_union
gmultiset_difference
.
Typeclasses
Opaque
gmultiset_dom
.
Typeclasses
Opaque
gmultiset_scalar_mul
gmultiset_dom
.
Section
basic_lemmas
.
Context
`{
Countable
A
}
.
...
...
@@ -114,6 +117,12 @@ Section basic_lemmas.
rewrite
lookup_difference_with
.
destruct
(
X
!!
_),
(
Y
!!
_);
simplify_option_eq
;
lia
.
Qed
.
Lemma
multiplicity_scalar_mul
n
X
x
:
multiplicity
x
(
n
*:
X
)
=
n
*
multiplicity
x
X
.
Proof
.
destruct
X
as
[
X
];
unfold
multiplicity
;
simpl
.
destruct
n
as
[|
n
];
[
done
|]
.
rewrite
lookup_fmap
.
destruct
(
X
!!
_);
simpl
;
lia
.
Qed
.
(* Set *)
Lemma
elem_of_multiplicity
x
X
:
x
∈
X
↔
0
<
multiplicity
x
X
.
...
...
@@ -131,6 +140,8 @@ Section basic_lemmas.
Proof
.
rewrite
!
elem_of_multiplicity
,
multiplicity_disj_union
.
lia
.
Qed
.
Lemma
gmultiset_elem_of_intersection
X
Y
x
:
x
∈
X
∩
Y
↔
x
∈
X
∧
x
∈
Y
.
Proof
.
rewrite
!
elem_of_multiplicity
,
multiplicity_intersection
.
lia
.
Qed
.
Lemma
gmultiset_elem_of_scalar_mul
n
X
x
:
x
∈
n
*:
X
↔
n
≠
0
∧
x
∈
X
.
Proof
.
rewrite
!
elem_of_multiplicity
,
multiplicity_scalar_mul
.
lia
.
Qed
.
Global
Instance
gmultiset_elem_of_dec
:
RelDecision
(
∈@
{
gmultiset
A
})
.
Proof
.
refine
(
λ
x
X
,
cast_if
(
decide
(
0
<
multiplicity
x
X
)));
done
.
Defined
.
...
...
@@ -211,6 +222,10 @@ Section multiset_unfold.
MultisetUnfold
x
X
n
→
MultisetUnfold
x
Y
m
→
MultisetUnfold
x
(
X
∖
Y
)
(
n
-
m
)
.
Proof
.
intros
[
HX
]
[
HY
];
constructor
.
by
rewrite
multiplicity_difference
,
HX
,
HY
.
Qed
.
Global
Instance
multiset_unfold_scalar_mul
x
m
X
n
:
MultisetUnfold
x
X
n
→
MultisetUnfold
x
(
m
*:
X
)
(
m
*
n
)
.
Proof
.
intros
[
HX
];
constructor
.
by
rewrite
multiplicity_scalar_mul
,
HX
.
Qed
.
Global
Instance
set_unfold_multiset_equiv
X
Y
f
g
:
(
∀
x
,
MultisetUnfold
x
X
(
f
x
))
→
(
∀
x
,
MultisetUnfold
x
Y
(
g
x
))
→
...
...
@@ -394,6 +409,40 @@ Section more_lemmas.
Lemma
gmultiset_non_empty_singleton
x
:
{[
+
x
+
]}
≠@
{
gmultiset
A
}
∅.
Proof
.
multiset_solver
.
Qed
.
(** Scalar *)
Lemma
gmultiset_scalar_mul_0
X
:
0
*:
X
=
∅.
Proof
.
multiset_solver
.
Qed
.
Lemma
gmultiset_scalar_mul_S_l
n
X
:
S
n
*:
X
=
X
⊎
(
n
*:
X
)
.
Proof
.
multiset_solver
.
Qed
.
Lemma
gmultiset_scalar_mul_S_r
n
X
:
S
n
*:
X
=
(
n
*:
X
)
⊎
X
.
Proof
.
multiset_solver
.
Qed
.
Lemma
gmultiset_scalar_mul_1
X
:
1
*:
X
=
X
.
Proof
.
multiset_solver
.
Qed
.
Lemma
gmultiset_scalar_mul_2
X
:
2
*:
X
=
X
⊎
X
.
Proof
.
multiset_solver
.
Qed
.
Lemma
gmultiset_scalar_mul_empty
n
:
n
*:
∅
=@
{
gmultiset
A
}
∅.
Proof
.
multiset_solver
.
Qed
.
Lemma
gmultiset_scalar_mul_disj_union
n
X
Y
:
n
*:
(
X
⊎
Y
)
=@
{
gmultiset
A
}
(
n
*:
X
)
⊎
(
n
*:
Y
)
.
Proof
.
multiset_solver
.
Qed
.
Lemma
gmultiset_scalar_mul_union
n
X
Y
:
n
*:
(
X
∪
Y
)
=@
{
gmultiset
A
}
(
n
*:
X
)
∪
(
n
*:
Y
)
.
Proof
.
set_unfold
.
intros
x
;
by
rewrite
Nat
.
mul_max_distr_l
.
Qed
.
Lemma
gmultiset_scalar_mul_intersection
n
X
Y
:
n
*:
(
X
∩
Y
)
=@
{
gmultiset
A
}
(
n
*:
X
)
∩
(
n
*:
Y
)
.
Proof
.
set_unfold
.
intros
x
;
by
rewrite
Nat
.
mul_min_distr_l
.
Qed
.
Lemma
gmultiset_scalar_mul_difference
n
X
Y
:
n
*:
(
X
∖
Y
)
=@
{
gmultiset
A
}
(
n
*:
X
)
∖
(
n
*:
Y
)
.
Proof
.
set_unfold
.
intros
x
;
by
rewrite
Nat
.
mul_sub_distr_l
.
Qed
.
Lemma
gmultiset_scalar_mul_inj_ne_0
n
X1
X2
:
n
≠
0
→
n
*:
X1
=
n
*:
X2
→
X1
=
X2
.
Proof
.
set_unfold
.
intros
?
HX
x
.
apply
(
Nat
.
mul_reg_l
_
_
n
);
auto
.
Qed
.
(** Specialized to [S n] so that type class search can find it. *)
Global
Instance
gmultiset_scalar_mul_inj_S
n
:
Inj
(
=
)
(
=@
{
gmultiset
A
})
(
S
n
*:.
)
.
Proof
.
intros
x1
x2
.
apply
gmultiset_scalar_mul_inj_ne_0
.
lia
.
Qed
.
(** Conversion from lists *)
Lemma
list_to_set_disj_nil
:
list_to_set_disj
[]
=@
{
gmultiset
A
}
∅.
Proof
.
done
.
Qed
.
...
...
@@ -449,6 +498,13 @@ Section more_lemmas.
by
(
by
rewrite
?lookup_union_with
,
?HX
,
?HY
)
.
by
rewrite
<-
(
assoc_L
(
++
)),
<-
IH
.
Qed
.
Lemma
gmultiset_elements_scalar_mul
n
X
:
elements
(
n
*:
X
)
≡
ₚ
mjoin
(
replicate
n
(
elements
X
))
.
Proof
.
induction
n
as
[|
n
IH
];
simpl
.
-
by
rewrite
gmultiset_scalar_mul_0
,
gmultiset_elements_empty
.
-
by
rewrite
gmultiset_scalar_mul_S_l
,
gmultiset_elements_disj_union
,
IH
.
Qed
.
Lemma
gmultiset_elem_of_elements
x
X
:
x
∈
elements
X
↔
x
∈
X
.
Proof
.
destruct
X
as
[
X
]
.
unfold
elements
,
gmultiset_elements
.
...
...
@@ -482,6 +538,16 @@ Section more_lemmas.
intros
Hcomm
Hassoc
.
unfold
set_fold
;
simpl
.
by
rewrite
gmultiset_elements_disj_union
,
<-
foldr_app
,
(
comm
(
++
))
.
Qed
.
Lemma
gmultiset_set_fold_scalar_mul
(
f
:
A
→
A
→
A
)
(
b
:
A
)
n
X
:
Comm
(
=
)
f
→
Assoc
(
=
)
f
→
set_fold
f
b
(
n
*:
X
)
=
Nat
.
iter
n
(
flip
(
set_fold
f
)
X
)
b
.
Proof
.
intros
Hcomm
Hassoc
.
induction
n
as
[|
n
IH
];
simpl
.
-
by
rewrite
gmultiset_scalar_mul_0
,
gmultiset_set_fold_empty
.
-
rewrite
gmultiset_scalar_mul_S_r
.
by
rewrite
(
gmultiset_set_fold_disj_union
_
_
_
_
_
_),
IH
.
Qed
.
(** Properties of the size operation *)
Lemma
gmultiset_size_empty
:
size
(
∅
:
gmultiset
A
)
=
0
.
...
...
@@ -519,6 +585,12 @@ Section more_lemmas.
unfold
size
,
gmultiset_size
;
simpl
.
by
rewrite
gmultiset_elements_disj_union
,
app_length
.
Qed
.
Lemma
gmultiset_size_scalar_mul
n
X
:
size
(
n
*:
X
)
=
n
*
size
X
.
Proof
.
induction
n
as
[|
n
IH
]
.
-
by
rewrite
gmultiset_scalar_mul_0
,
gmultiset_size_empty
.
-
rewrite
gmultiset_scalar_mul_S_l
,
gmultiset_size_disj_union
,
IH
.
lia
.
Qed
.
(** Order stuff *)
Global
Instance
gmultiset_po
:
PartialOrder
(
⊆@
{
gmultiset
A
})
.
...
...
This diff is collapsed.
Click to expand it.
tests/multiset_solver.v
+
18
−
1
View file @
65dec1a0
From
stdpp
Require
Import
gmultiset
.
From
stdpp
Require
Import
gmultiset
sets
.
Section
test
.
Context
`{
Countable
A
}
.
...
...
@@ -11,6 +11,12 @@ Section test.
{[
+
z
+
]}
⊎
X
=
{[
+
y
+
]}
⊎
Y
→
{[
+
x
;
z
+
]}
⊎
X
=
{[
+
y
;
x
+
]}
⊎
Y
.
Proof
.
multiset_solver
.
Qed
.
Lemma
test_eq_3
x
:
{[
+
x
;
x
+
]}
=@
{
gmultiset
_}
2
*:
{[
+
x
+
]}
.
Proof
.
multiset_solver
.
Qed
.
Lemma
test_eq_4
x
y
:
{[
+
x
;
y
;
x
+
]}
=@
{
gmultiset
_}
2
*:
{[
+
x
+
]}
⊎
{[
+
y
+
]}
.
Proof
.
multiset_solver
.
Qed
.
Lemma
test_neq_1
x
y
X
:
{[
+
x
;
y
+
]}
⊎
X
≠
∅.
Proof
.
multiset_solver
.
Qed
.
...
...
@@ -32,6 +38,12 @@ Section test.
Lemma
test_multiplicity_3
x
X
:
multiplicity
x
X
<
3
→
{[
+
x
;
x
;
x
+
]}
⊈
X
.
Proof
.
multiset_solver
.
Qed
.
Lemma
test_multiplicity_4
x
X
:
2
<
multiplicity
x
X
→
3
*:
{[
+
x
+
]}
⊆
X
.
Proof
.
multiset_solver
.
Qed
.
Lemma
test_multiplicity_5
x
X
:
multiplicity
x
X
<
3
→
3
*:
{[
+
x
+
]}
⊈
X
.
Proof
.
multiset_solver
.
Qed
.
Lemma
test_elem_of_1
x
X
:
x
∈
X
↔
{[
+
x
+
]}
⊎
∅
⊆
X
.
Proof
.
multiset_solver
.
Qed
.
...
...
@@ -63,6 +75,11 @@ Section test.
⊆@
{
gmultiset
A
}
{[
+
x1
;
x1
;
x2
;
x3
;
x4
;
x4
+
]}
⊎
{[
+
x5
;
x5
;
x6
;
x7
;
x9
;
x8
;
x8
+
]}
.
Proof
.
multiset_solver
.
Qed
.
Lemma
test_big_5
x1
x2
x3
x4
x5
x6
x7
x8
x9
:
2
*:
{[
+
x1
;
x2
;
x4
+
]}
⊎
2
*:
{[
+
x5
;
x6
;
x7
;
x8
;
x8
;
x9
+
]}
⊆@
{
gmultiset
A
}
{[
+
x1
;
x1
;
x2
;
x3
;
x4
;
x4
;
x2
+
]}
⊎
3
*:
{[
+
x5
;
x5
;
x6
;
x7
;
x9
;
x8
;
x8
+
]}
.
Proof
.
multiset_solver
.
Qed
.
Lemma
test_firstorder_1
(
P
:
A
→
Prop
)
x
X
:
P
x
∧
(
∀
y
,
y
∈
X
→
P
y
)
↔
(
∀
y
,
y
∈
{[
+
x
+
]}
⊎
X
→
P
y
)
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment