Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
S
stdpp
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
41
Issues
41
List
Boards
Labels
Service Desk
Milestones
Merge Requests
3
Merge Requests
3
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Environments
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Iris
stdpp
Commits
5f737816
Commit
5f737816
authored
Jan 30, 2015
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Type punning for lookup/alter on values.
parent
5644d68f
Changes
1
Hide whitespace changes
Inline
Sidebyside
Showing
1 changed file
with
37 additions
and
13 deletions
+37
13
theories/list.v
theories/list.v
+37
13
No files found.
theories/list.v
View file @
5f737816
...
...
@@ 1972,6 +1972,15 @@ Section Forall_Exists.
Proof
.
intros
H
.
apply
Forall_proper
.
red
;
apply
H
.
done
.
Qed
.
Lemma
Forall_not
l
:
length
l
≠
0
→
Forall
(
not
∘
P
)
l
→
¬
Forall
P
l
.
Proof
.
by
destruct
2
;
inversion
1
.
Qed
.
Lemma
Forall_and
{
Q
}
l
:
Forall
(
λ
x
,
P
x
∧
Q
x
)
l
↔
Forall
P
l
∧
Forall
Q
l
.
Proof
.
split
;
[
induction
1
;
constructor
;
naive_solver
].
intros
[
Hl
Hl'
]
;
revert
Hl'
;
induction
Hl
;
inversion_clear
1
;
auto
.
Qed
.
Lemma
Forall_and_l
{
Q
}
l
:
Forall
(
λ
x
,
P
x
∧
Q
x
)
l
→
Forall
P
l
.
Proof
.
rewrite
Forall_and
;
tauto
.
Qed
.
Lemma
Forall_and_r
{
Q
}
l
:
Forall
(
λ
x
,
P
x
∧
Q
x
)
l
→
Forall
Q
l
.
Proof
.
rewrite
Forall_and
;
tauto
.
Qed
.
Lemma
Forall_delete
l
i
:
Forall
P
l
→
Forall
P
(
delete
i
l
).
Proof
.
intros
H
.
revert
i
.
by
induction
H
;
intros
[
i
]
;
try
constructor
.
Qed
.
Lemma
Forall_lookup
l
:
Forall
P
l
↔
∀
i
x
,
l
!!
i
=
Some
x
→
P
x
.
...
...
@@ 2275,26 +2284,39 @@ Section Forall2.
intros
.
rewrite
!
resize_spec
,
(
Forall2_length
l
k
)
by
done
.
auto
using
Forall2_app
,
Forall2_take
,
Forall2_replicate
.
Qed
.
Lemma
Forall2_resize_
ge_
l
l
k
x
y
n
m
:
P
x
y
→
Forall
(
flip
P
y
)
l
→
n
≤
m
→
Lemma
Forall2_resize_l
l
k
x
y
n
m
:
P
x
y
→
Forall
(
flip
P
y
)
l
→
Forall2
P
(
resize
n
x
l
)
k
→
Forall2
P
(
resize
m
x
l
)
(
resize
m
y
k
).
Proof
.
intros
.
assert
(
n
=
length
k
)
as
>.
intros
.
destruct
(
decide
(
m
≤
n
)).
{
rewrite
<(
resize_resize
l
m
n
)
by
done
.
by
apply
Forall2_resize
.
}
intros
.
assert
(
n
=
length
k
)
;
subst
.
{
by
rewrite
<(
Forall2_length
(
resize
n
x
l
)
k
),
resize_length
.
}
rewrite
(
le_plus_minus
(
length
k
)
m
),
!
resize_plus
,
resize_all
,
drop_all
,
resize_nil
by
done
;
auto
using
Forall2_app
,
Forall2_replicate_r
,
rewrite
(
le_plus_minus
(
length
k
)
m
),
!
resize_plus
,
resize_all
,
drop_all
,
resize_nil
by
lia
.
auto
using
Forall2_app
,
Forall2_replicate_r
,
Forall_resize
,
Forall_drop
,
resize_length
.
Qed
.
Lemma
Forall2_resize_
ge_
r
l
k
x
y
n
m
:
P
x
y
→
Forall
(
P
x
)
k
→
n
≤
m
→
Lemma
Forall2_resize_r
l
k
x
y
n
m
:
P
x
y
→
Forall
(
P
x
)
k
→
Forall2
P
l
(
resize
n
y
k
)
→
Forall2
P
(
resize
m
x
l
)
(
resize
m
y
k
).
Proof
.
intros
.
assert
(
n
=
length
l
)
as
>.
intros
.
destruct
(
decide
(
m
≤
n
)).
{
rewrite
<(
resize_resize
k
m
n
)
by
done
.
by
apply
Forall2_resize
.
}
assert
(
n
=
length
l
)
;
subst
.
{
by
rewrite
(
Forall2_length
l
(
resize
n
y
k
)),
resize_length
.
}
rewrite
(
le_plus_minus
(
length
l
)
m
),
!
resize_plus
,
resize_all
,
drop_all
,
resize_nil
by
done
;
auto
using
Forall2_app
,
Forall2_replicate_l
,
rewrite
(
le_plus_minus
(
length
l
)
m
),
!
resize_plus
,
resize_all
,
drop_all
,
resize_nil
by
lia
.
auto
using
Forall2_app
,
Forall2_replicate_l
,
Forall_resize
,
Forall_drop
,
resize_length
.
Qed
.
Lemma
Forall2_resize_r_flip
l
k
x
y
n
m
:
P
x
y
→
Forall
(
P
x
)
k
→
length
k
=
m
→
Forall2
P
l
(
resize
n
y
k
)
→
Forall2
P
(
resize
m
x
l
)
k
.
Proof
.
intros
??
<
?.
rewrite
<(
resize_all
k
y
)
at
2
.
apply
Forall2_resize_r
with
n
;
auto
using
Forall_true
.
Qed
.
Lemma
Forall2_sublist_lookup_l
l
k
n
i
l'
:
Forall2
P
l
k
→
sublist_lookup
n
i
l
=
Some
l'
→
∃
k'
,
sublist_lookup
n
i
k
=
Some
k'
∧
Forall2
P
l'
k'
.
...
...
@@ 3243,14 +3265,16 @@ Ltac decompose_Forall_hyps :=
let
E
:
=
fresh
in
assert
(
P
x
)
as
E
by
(
apply
(
Forall_lookup_1
P
_
_
_
H
H1
))
;
lazy
beta
in
E

H
:
Forall2
?P
?l
?k

_
=>
lazy
match
goal
with
match
goal
with

H1
:
l
!!
?i
=
Some
?x
,
H2
:
k
!!
?i
=
Some
?y

_
=>
unless
(
P
x
y
)
by
done
;
let
E
:
=
fresh
in
assert
(
P
x
y
)
as
E
by
(
by
apply
(
Forall2_lookup_lr
P
l
k
i
x
y
))
;
lazy
beta
in
E

H1
:
l
!!
_
=
Some
?x

_
=>

H1
:
l
!!
?i
=
Some
?x

_
=>
try
(
match
goal
with
_
:
k
!!
i
=
Some
_

_
=>
fail
2
end
)
;
destruct
(
Forall2_lookup_l
P
_
_
_
_
H
H1
)
as
(?&?&?)

H2
:
k
!!
_
=
Some
?y

_
=>

H2
:
k
!!
?i
=
Some
?y

_
=>
try
(
match
goal
with
_
:
l
!!
i
=
Some
_

_
=>
fail
2
end
)
;
destruct
(
Forall2_lookup_r
P
_
_
_
_
H
H2
)
as
(?&?&?)
end

H
:
Forall3
?P
?l
?l'
?k

_
=>
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment