Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
stdpp
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
stdpp
Commits
5c7bdf2d
Commit
5c7bdf2d
authored
3 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Add lemmas `rtc_nsteps_{1,2}` and `rtc_bsteps_{1,2}`.
parent
40a0487a
No related branches found
No related tags found
1 merge request
!278
Prove more equivalences for closure operators on relations.
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/relations.v
+14
-11
14 additions, 11 deletions
theories/relations.v
with
14 additions
and
11 deletions
theories/relations.v
+
14
−
11
View file @
5c7bdf2d
...
@@ -169,9 +169,6 @@ Section general.
...
@@ -169,9 +169,6 @@ Section general.
(
∀
x
y
,
R
x
y
→
R'
(
f
x
)
(
f
y
))
→
nsteps
R
n
x
y
→
nsteps
R'
n
(
f
x
)
(
f
y
)
.
(
∀
x
y
,
R
x
y
→
R'
(
f
x
)
(
f
y
))
→
nsteps
R
n
x
y
→
nsteps
R'
n
(
f
x
)
(
f
y
)
.
Proof
.
induction
2
;
econstructor
;
eauto
.
Qed
.
Proof
.
induction
2
;
econstructor
;
eauto
.
Qed
.
Lemma
nsteps_rtc
n
x
y
:
nsteps
R
n
x
y
→
rtc
R
x
y
.
Proof
.
induction
1
;
eauto
.
Qed
.
(** ** Results about [bsteps] *)
(** ** Results about [bsteps] *)
Lemma
bsteps_once
n
x
y
:
R
x
y
→
bsteps
R
(
S
n
)
x
y
.
Lemma
bsteps_once
n
x
y
:
R
x
y
→
bsteps
R
(
S
n
)
x
y
.
Proof
.
eauto
.
Qed
.
Proof
.
eauto
.
Qed
.
...
@@ -214,9 +211,6 @@ Section general.
...
@@ -214,9 +211,6 @@ Section general.
(
∀
x
y
,
R
x
y
→
R'
(
f
x
)
(
f
y
))
→
bsteps
R
n
x
y
→
bsteps
R'
n
(
f
x
)
(
f
y
)
.
(
∀
x
y
,
R
x
y
→
R'
(
f
x
)
(
f
y
))
→
bsteps
R
n
x
y
→
bsteps
R'
n
(
f
x
)
(
f
y
)
.
Proof
.
induction
2
;
econstructor
;
eauto
.
Qed
.
Proof
.
induction
2
;
econstructor
;
eauto
.
Qed
.
Lemma
bsteps_rtc
n
x
y
:
bsteps
R
n
x
y
→
rtc
R
x
y
.
Proof
.
induction
1
;
eauto
.
Qed
.
(** ** Results about the transitive closure [tc] *)
(** ** Results about the transitive closure [tc] *)
Lemma
tc_transitive
x
y
z
:
tc
R
x
y
→
tc
R
y
z
→
tc
R
x
z
.
Lemma
tc_transitive
x
y
z
:
tc
R
x
y
→
tc
R
y
z
→
tc
R
x
z
.
Proof
.
induction
1
;
eauto
.
Qed
.
Proof
.
induction
1
;
eauto
.
Qed
.
...
@@ -271,18 +265,27 @@ Section general.
...
@@ -271,18 +265,27 @@ Section general.
Lemma
rtc_tc
x
y
:
rtc
R
x
y
↔
x
=
y
∨
tc
R
x
y
.
Lemma
rtc_tc
x
y
:
rtc
R
x
y
↔
x
=
y
∨
tc
R
x
y
.
Proof
.
Proof
.
split
.
split
;
[|
naive_solver
eauto
using
tc_rtc
]
.
-
induction
1
;
naive_solver
.
induction
1
;
naive_solver
.
-
naive_solver
eauto
using
tc_rtc
.
Qed
.
Qed
.
Lemma
rtc_nsteps
x
y
:
rtc
R
x
y
↔
∃
n
,
nsteps
R
n
x
y
.
Lemma
rtc_nsteps
x
y
:
rtc
R
x
y
↔
∃
n
,
nsteps
R
n
x
y
.
Proof
.
Proof
.
split
.
split
.
-
induction
1
;
[
exists
0
;
constructor
|]
.
naive_solver
.
-
induction
1
;
naive_solver
.
-
intros
[
n
Hstep
]
.
induction
Hstep
;
eauto
.
-
intros
[
n
Hstep
s
]
.
induction
Hstep
s
;
naive_solver
.
Qed
.
Qed
.
Lemma
rtc_nsteps_1
x
y
:
rtc
R
x
y
→
∃
n
,
nsteps
R
n
x
y
.
Proof
.
rewrite
rtc_nsteps
.
naive_solver
.
Qed
.
Lemma
rtc_nsteps_2
n
x
y
:
nsteps
R
n
x
y
→
rtc
R
x
y
.
Proof
.
rewrite
rtc_nsteps
.
naive_solver
.
Qed
.
Lemma
rtc_bsteps
x
y
:
rtc
R
x
y
↔
∃
n
,
bsteps
R
n
x
y
.
Lemma
rtc_bsteps
x
y
:
rtc
R
x
y
↔
∃
n
,
bsteps
R
n
x
y
.
Proof
.
rewrite
rtc_nsteps
.
setoid_rewrite
bsteps_nsteps
.
naive_solver
.
Qed
.
Proof
.
rewrite
rtc_nsteps
.
setoid_rewrite
bsteps_nsteps
.
naive_solver
.
Qed
.
Lemma
rtc_bsteps_1
x
y
:
rtc
R
x
y
→
∃
n
,
bsteps
R
n
x
y
.
Proof
.
rewrite
rtc_bsteps
.
naive_solver
.
Qed
.
Lemma
rtc_bsteps_2
n
x
y
:
bsteps
R
n
x
y
→
rtc
R
x
y
.
Proof
.
rewrite
rtc_bsteps
.
naive_solver
.
Qed
.
Lemma
nsteps_list
n
x
y
:
Lemma
nsteps_list
n
x
y
:
nsteps
R
n
x
y
↔
∃
l
,
nsteps
R
n
x
y
↔
∃
l
,
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment